

```
1. #include <fstream>
2. #include <iostream>
3. #include <iomanip>
4. #include <string>
5. using namespace std;
6. #include "Queue04.h"
7. class Sim : public Queue {
8.     int served;
9.     int totalresponse;
10.    int maxresponse;
11.    void Arrival(int time);
12.    void Departure(int time);
13.    void Print(ostream& o,char* t,int v,char* u);
14.    void Print(ostream& o,char* t,double v,char* u);
15. public:
16.     Sim();
17.     void Run(istream& i);
18.     void Print(ostream& o);
19. };
```

Figure 1. Single-server queue simulation **class Sim**

Sim::Sim()

1. Initialize member *served* to zero.
2. Initialize member *totalresponse* to zero.
3. Initialize member *maxresponse* to zero.

void Sim::Run(istream& i)

1. Declare integer variable *time* and initialize it to zero.
2. **for();{**
 - 2.1. Declare integer variable *code*.
 - 2.2. Scan input file stream *i* for the next integer. Store the integer into variable *code*.
 - 2.3. **if (i.eof()) break;**
 - 2.4. **switch (code) {**
 - 2.4.1. **case 1: //Nothing happened**
 - 2.4.2. **case 2: //A customer arrived**
 - 2.4.2.1. Call function *Arrival(time)* to process the new arrival.
 - 2.4.3. **case 3: //A customer departed**
 - 2.4.3.1. Call function *Departure(time)* to process the departing customer.
 - 2.4.4. **case 4: //A customer arrived and another customer departed**
 - 2.4.4.1. Call function *Arrival(time)* to process the new arrival.
 - 2.4.4.2. Call function *Departure(time)* to process the departing customer.
 - 2.4.5. **default: //The code is erroneous**
 - 2.4.5.1. **throw InvalidCodeException(code)**
 - 2.5. Increment the value of variable *time* by 15 seconds.

void *Sim::Print*(*ostream& o*)

1. Call private member function *Print* having arguments, “Customers served”, member *served*, and “customers”
2. Call private member function *Print* having arguments, “Maximum response”, member *maxresponse*, and “seconds”
3. Call private member function *Print* having arguments, “Simulated mean response”, member *totalresponse/served*, and “seconds”

void *Sim::Arrival*(*int t*)

1. **if** the queue is full **return**. This situation is roughly equivalent to the store being full.
2. Put the arrival time *t* on the queue.

void *Sim::Departure*(*int t*)

1. **if** the queue is empty **return**. This situation is roughly equivalent to the store being empty.
2. Find the integer value *d* equal to the difference between the current time *t* and the value of the time removed from the queue. Variable *d* is an abbreviation for *difference*.
3. **if** *d* is larger than the maximum response time, *maxresponse*, assign the value of *d* to member *maxresponse*.
4. Add *d* to the sum of all response times of customers that were served, member *totalresponse*.
5. Increment the record of the number of customers that were served, member *served*.