Programming Il template class Stack (element implementation)
CMSC 2613 Lecture 13

struct StackException { //Stack Exception
StackException(char* m)
{ cout<<endl
cout << “l am the Stack and | am “ << m << “.”;
cout << endl;
}
b
template <class 7>
class Stack {
struct Element {

Element* prev; //Points to previous element
T value; //Value in this Element
Element(Element* p,T v):prev(p),value(v){} //Constructor
b
Element* tos; //Points to the Element on top of
the Stack
void Kill(Element* e) //Reclaims storage from elements
{ while(e){ //remaining on the Stack
Element* p=e;
e=e->prev;
delete p;
}
}
public:
Stack():tos(0){} //Constructor
~Stack(){Kill(tos);} //Destructor, reclaim storage
bool IsFull(void){return false;} //1s the Stack full?
bool IsEmpty(void){return tos==0;} //1s the Stack empty?
void Push(T v) //Put value v on top of the Stack

{ if (IsFull()) throw StackException(“full”);
Element* n=new Element(tos,v);
tos=n;
}
T Pop(void) //Remove and return the value on top
of
{ if (IsEmpty()) throw StackException(“empty”); //the Stack
Element* p=tos;
T v=p->value;
tos=p->prev;
delete p;
return v;

b

Figure 1. template class Stack.



Programming Il template class Stack (element implementation)
CMSC 2613 Lecture 13



Programming Il
CMSC 2613

template class Stack (element implementation)
Lecture 13

Example: Program pO1 reverses the characters of string “tilt” illustrating the last-in-first-out

character of a stack.

#ifndef Stack_h

#define Stack_h 1

struct StackException {
StackException(char* m)
{ cout<<endl

cout << “l am the Stack and | am “ << m <<

cout << endl;
}
b
template <class 7>
class Stack {
struct Element {
Element* prev;
T value;
Element(Element* p,T v):prev(p),value(v){}
b
Element* tos;
the Stack

void Kill(Element* €)

{ while(e){
Element* p=e;
e=e->prev;
delete p;

}

public:

Stack():tos(0){}

~Stack(){Kill(tos);}

bool /sFull(void){return false;}

bool IsEmpty(void){return tos==0;}

void Push(T v)

{ if (IsFull()) throw StackException(“full”);
Element* n=new Element(tos,v);
tos=n;

}

T Pop(void)

of

{ if (IsEmpty()) throw StackException(“empty”);

Element* p=tos;
T v=p->value;
tos=p->prev;
delete p;
returnv;
}
b
#endif

//Stack Exception

“wn,
L)

//Points to previous element
//Value in this Element
//Constructor

//Points to the Element on top of

//Reclaims storage from elements
//remaining on the Stack

//Constructor

//Destructor, reclaim storage
//\s the Stack full?

//\s the Stack empty?

//Put value v on top of the Stack

//Remove and return the value on top

//the Stack




Programming Il template class Stack (element implementation)
CMSC 2613 Lecture 13

Figure 2. File Stack.h

#include <jostream>

#include <iomanip>

#include <string>

using namespace std;

#tinclude "Stack.h"

int main()

{ string t="tilt";
Stack <char> S;
for (int a=0;a<t.length();a++) S.Push(t[a]);
cout << endl;
while (1S.IsEmpty()) cout << S.Pop();
cout << endl,
return 0;

Figure 3. File pOl.cpp
Program p01 prints:
tlit



Programming Il template class Stack (element implementation)
CMSC 2613 Lecture 13

Exercises:
1. Modify file p01.cpp given in this note so that the stack stores values of type double. Write a

program that will evaluate a postfix string. For example the postfix string “3 4 5 * +”

evaluates to 60.
2. A queue is a first-in-first-out (FIFO) data structure. Design a dequeue (pronounced “deck”)

that implements both a stack and a queue as a template.



