
Programming II template class Stack (element implementation)
CMSC 2613 Lecture 13

Figure 1. template class Stack.

struct StackException { //Stack Exception
 StackException(char* m)

{ cout << endl;
cout << “I am the Stack and I am “ << m << “.”;
cout << endl;

}
};
template <class T>
class Stack {

struct Element {
Element* prev; //Points to previous element
T value; //Value in this Element
Element(Element* p,T v):prev(p),value(v){} //Constructor

};
 Element* tos; //Points to the Element on top of
the Stack

void Kill(Element* e) //Reclaims storage from elements
{ while (e) { //remaining on the Stack

Element* p=e;
e=e->prev;
delete p;

}
}

public:
 Stack():tos(0){} //Constructor
 ~Stack(){Kill(tos);} //Destructor, reclaim storage
 bool IsFull(void){return false;} //Is the Stack full?
 bool IsEmpty(void){return tos==0;} //Is the Stack empty?
 void Push(T v) //Put value v on top of the Stack

{ if (IsFull()) throw StackException(“full”);
Element* n=new Element(tos,v);
tos=n;

}
T Pop(void) //Remove and return the value on top
of
{ if (IsEmpty()) throw StackException(“empty”); //the Stack

Element* p=tos;
T v=p->value;
tos=p->prev;
delete p;
return v;

}
};

 1

Programming II template class Stack (element implementation)
CMSC 2613 Lecture 13

 2

Programming II template class Stack (element implementation)
CMSC 2613 Lecture 13

Example: Program p01 reverses the characters of string “tilt” illustrating the last-in-first-out
character of a stack.

#ifndef Stack_h
#define Stack_h 1
struct StackException { //Stack Exception
 StackException(char* m)

{ cout << endl;
cout << “I am the Stack and I am “ << m << “.”;
cout << endl;

}
};
template <class T>
class Stack {

struct Element {
Element* prev; //Points to previous element
T value; //Value in this Element
Element(Element* p,T v):prev(p),value(v){} //Constructor

};
 Element* tos; //Points to the Element on top of
the Stack

void Kill(Element* e) //Reclaims storage from elements
{ while (e) { //remaining on the Stack

Element* p=e;
e=e->prev;
delete p;

}
}

public:
 Stack():tos(0){} //Constructor
 ~Stack(){Kill(tos);} //Destructor, reclaim storage
 bool IsFull(void){return false;} //Is the Stack full?
 bool IsEmpty(void){return tos==0;} //Is the Stack empty?
 void Push(T v) //Put value v on top of the Stack

{ if (IsFull()) throw StackException(“full”);
Element* n=new Element(tos,v);
tos=n;

}
T Pop(void) //Remove and return the value on top
of
{ if (IsEmpty()) throw StackException(“empty”); //the Stack

Element* p=tos;
T v=p->value;
tos=p->prev;
delete p;
return v;

}
};
#endif

 3

Programming II template class Stack (element implementation)
CMSC 2613 Lecture 13

Figure 2. File Stack.h

Figure 3. File p01.cpp
Program p01 prints:
tlit

#include <iostream>
#include <iomanip>
#include <string>
using namespace std;
#include "Stack.h"
int main()
{ string t="tilt";
 Stack <char> S;
 for (int a=0;a<t.length();a++) S.Push(t[a]);
 cout << endl;
 while (!S.IsEmpty()) cout << S.Pop();
 cout << endl;
 return 0;
}

 4

Programming II template class Stack (element implementation)
CMSC 2613 Lecture 13

Exercises:
1. Modify file p01.cpp given in this note so that the stack stores values of type double. Write a

program that will evaluate a postfix string. For example the postfix string “3 4 5 * +”
evaluates to 60.

2. A queue is a first-in-first-out (FIFO) data structure. Design a dequeue (pronounced “deck”)
that implements both a stack and a queue as a template.

 5

