
Programming II Lecture 12
CMSC 2613 class Stack (element implementation)

 1

Element*

S

Stack

tos

Element

prev value

Element* int

Element

prev value

Element* int

Element

prev value

Element* int

Element

prev value

Element* int

1

2

3

4

Figure 1. Element implementation of a Stack

The stack illustrated in figure 1 is created by dynamically allocating storage for each element.
Integers are stored in the elements in figure 1. Integers are stored on the stack as they were
pushed on the stack. The integer value 1 was pushed on the stack first followed by integers 2, 3
and 4. Note that element on top of the stack contains the last integer pushed on the stack. A
stack is a Last-In-First-Out data structure. The last element inserted on to a stack is the first
element to be removed.

Programming II Lecture 12
CMSC 2613 class Stack (element implementation)

 2

Stack Element: A stack element contains storage for the data in the stack and a pointer to the
previous element.

class Element is a private implementation for a stack element.

class Element {

Element* prev;
int value;

public:
Element(Element* p,int v):prev(p),value(v){}
Element* Prev(void){return prev;}
int Value(void){return value;}

};
Figure 2. class Element.

Element

prev value

Element* int

Figure 3. Stack Element

struct StackException {
 StackException(char* m)
 { cout << endl << "I am the Stack and I am " << m << "." << endl;
 }
 };
class Stack {

struct Element {
 Element* prev;
 int value;
 Element(Element* p,int v):prev(p),value(v){}
 };
 Element* tos;
 void Kill(Element* e);
public:
 Stack();
 ~Stack();
 bool IsFull(void);
 bool IsEmpty(void);
 void Push(int v);
 int Pop(void);
};

Figure 4. class Stack

Programming II Lecture 12
CMSC 2613 class Stack (element implementation)

 3

1. Member data in class Element.
1.1. Element *prev; Member prev points the previous element put on the stack. For

example, consider the sequence of statements:
Stack S; S.Push(1); S.Push(2);

Member prev in the stack element containing the integer value 2 points to the stack
element containing the integer value 1.

1.2. int value; Member value stores integer data placed on the stack.
2. Member functions of struct Element.

2.1. Stack::Element::Element(Element* p,int v);
Consructor Element assigns initial values to private members of class Element.
Parameter p is assigned to member prev and parameter v is assigned to member value.

3. Member data in class Stack.
3.1. Element* tos; Member tos points to the element on top of the stack. If the stack is

empty, the value of member tos is zero (0) or null.
4. Member functions of class Stack.

4.1. Stack::Stack ():tos(0){}
Consructor Stack assigns a null-value to private member tos. Member tos anchors a list
of elements that are used to implement the stack.

4.2. Stack::~Stack (){Kill(tos);}
Destructor ~Stack directs the process of reclaiming storage for stack elements.
Member tos points to the element on top of the stack. Storage is reclaimed by
traversing the list of elements beginning with the element on top of the stack.

4.3. void Stack::Kill (Element* e) { … }
Function Kill removes elements on the stack and reclaims their storage. The key
concept for removal is that an element cannot be removed until its predecessor is
removed. Removing predecessors can be removed by walking the list of elements
linked by member prev.

4.4. bool Stack::IsFull (void){…}
Member function IsFull should return true when storage cannot be obtained for a new
element. However, that event is very unlikely and the computer system will very likely
exhibit other serious difficulties. We assume, therefore, that the stack is never full.

4.5. bool Stack::IsEmpty (void){…}
Member function IsEmpty returns true when the stack is empty. The stack is empty
when member tos points to no elements. Member tos has the integer value zero when
it is null.

4.6. void Stack::Push (int v)
{ if (IsFull()) throw StackException(“Full”);

Element* n=new Element(tos,v);
tos=n;

}
Function Push determines if the Stack is full. If the stack is full an exception is thrown
because no more elements can be put on the Stack. If the Stack has space for at least
one more element, a new element is created, linked to the previous element, and
member tos is assigned to point to the newest element.

4.7. int Stack::Pop (void){ … }
Function Pop removes the element on top of the stack and returns the value stored in
the element. Local variable n is assigned to the value of member tos.. Storage for local
variable v is allocated. The value of Element::value is assigned to local variable v.

Programming II Lecture 12
CMSC 2613 class Stack (element implementation)

 4

Member tos is assigned to the penultimate element. Storage for the element that was
formerly the element on top of the stack is reclaimed. Storage for local variables n and
v is reclaimed as function Pop returns. The value of variable v is returned.

struct StackException {
 StackException(char* m)
 { cout << endl << "I am the Stack and I am " << m << "." << endl;
 }
};

class Stack {

struct Element {
 Element* prev;
 int value;
 Element(Element* p,int v):prev(p),value(v){}
 };
 Element* tos;
 void Kill(Element* e)

{ Element* e=tos;
while (e) {

Element* p=e;
e=e->prev;
delete p;

}
}

public:
 Stack():tos(0){}
 ~Stack(){Kill(tos);tos=0;}
 bool IsFull(void){return 0;}
 bool IsEmpty(void){return tos==0;}
 void Push(int v)

{ if (IsFull()) throw StackException(“full”);
Element* e=new Element(tos,v);
tos=e;

}
 int Pop(void)

{ If (IsEmpty()) throw StackException(“empty”);
Element* e=tos;
int v=e->value;
tos=e->prev;
delete e;
return v;

}
};

Figure 5. class Stack member function implementation

