
Programming II Lecture 11
CMSC 2613 Postfix Evaluation

 1

Arithmetic forms
1. Infix form. You are accustomed to infix notation. The operation is between the two

operands. For example, the expression 5 + 6 is equal to 11. The operator, +, is between the
two operands, 5 and 6.

2. Prefix form. The operator precedes the two (or more) operands. For example, + 5 6 yields
11. Functions are in prefix form. The operator is the function and operands are arguments.
Consider function max that returns the larger of the two arguments. max(5,6) returns a
value of 6.

3. Postfix form. In postfix notation, the operator follows the operands. You are familiar with
this type of arithmetic if you use Hewlett-Packard calculators. The advantage of this form is
that it requires no parentheses. For example, 5 6 + yields 11.

Consider a longer sequence:
5 6 * 64 32 - - 2 / 1 +
The result of evaluating the sequence is 0.

A stack can be used to evaluate postfix notation.
Rule 1. Push operands.
Rule 2. Operators pop operands from the stack, perform the operation, and push results on to
the stack.

Stack (after operation)

 32
 6 64 64 32 2 1

5 5 30 30 30 30 -2 -2 -1 -1 0
5 6 * 64 32 - - 2 / 1 +

Program p03 evaluates postfix expressions. The problem is to recognize integer operands and
arithmetic operators. Ordinarily a scanner is used to recognize tokens. Program p03 contains a
scanner component.

File Description
p03.cpp Processes command line arguments and evaluates postfix expressions.
Stack03.cpp Stack ADT implementation using a dynamically allocated elements.
Stack03.h Class Stack
Scan03.l Lex specification for the scanner required by program p03.
Scan03.h Scanner interface
p03make Instructions for the UNIX utility make. Instructions direct make to compile

and bind program p03.

Programming II Lecture 11
CMSC 2613 Postfix Evaluation

 2

* -

-

/

+

5 6 64 32

2

1

Figure 1. Expression Tree for Postfix Expression

Project p03 notes.
1. You must open the input file using function fopen defined in include file cstdio.

…
#include <cstdio>
…
char ifn[255]; //Input file name
FILE* i=fopen(ifn,”r”); //Open the file whose name is stored in string ifn.
…

2. You must close the input file using function fclose defined in include file cstdio.
…
#include <cstdio>
…
char ifn[255]; //Input file name
FILE* i=fopen(ifn,”r”); //Open the file whose name is stored in string ifn.
…
fclose(i); //Close FILE i.
…

3. You must redirect the input file from the keyboard to the input file whose name was given
on the command line before program p03 reads any input data. The constructor for the
scanner defined in file Scan03.h performs this function.
void PostfixMgr(FILE* i,ostream& o)
{ Scan L(i); //Redirect the input from the keyboard to FILE i
 …
}

Programming II Lecture 11
CMSC 2613 Postfix Evaluation

 3

4. A token consists of an integer code and a string. When member function Lex is called, it
returns the integer code for the token recognized. Member function Lex returns a value of
zero (0) when the end-of-file mark is read. After function Lex is called, member function
FetchSpelling can be called to return the string accepted by the scanner.
#include “Scan03.h”
void PostfixMgr(FILE* i,ostream& o)
{ Scan L(i); //Redirect the input from the keyboard to FILE i
 …
 for (;;) {
 int t=L.Lex(); //Obtain the token code of the next token
 if (t==0) break; //Stop when the EOF is read
 cout << endl;
 cout << setw(4) << t; //Print the token code
 cout << setw(30) //Print the string accepted by scanner L.
 << L.FetchSpelling();
 }
}

5. If the token accepted is a string that can be interpreted as an integer, it must be converted
to an actual integer.
#include “Scan03.h”
void PostfixMgr(FILE* i,ostream& o)
{ Scan L(i); //Redirect the input from the keyboard to FILE i
 …
 for (;;) {
 int t=L.Lex(); //Obtain the token code of the next token
 if (t==0) break; //Stop when the EOF is read
 if (t==INTLIT) { //Was the token an integer literal?
 int k=L.Intlit(); //Obtain the integer from member function Intlit

 }

}

	Scan03.l

