
Programming II template class Stack (array implementation)
CMSC 2613 Lecture 10

 1

struct StackException { //Stack Exception
 StackException(char* m)

{ cout << endl;
cout << “I am the Stack and I am “ << m << “.”;
cout << endl;

}
};
template <class T>
class Stack {
 int size; //Number of available elements
 int tos; //Index of the element on top of the stack
 T* S; //Points to storage for the stack
public:
 Stack(int sz=100):size(sz),tos(-1){S=new T[size];} //Constructor, allocate storage
 ~Stack(){if (S) delete[] S;} //Destructor, reclaim storage
 bool IsFull(void){return tos>=size-1;} //Is the Stack full?
 bool IsEmpty(void){return tos<0;} //Is the Stack empty?
 void Push(T v) //Put value v on top of the Stack

{ if (IsFull()) throw StackException(“full”);
S[++tos]=v;

}
T Pop(void) //Remove and return the value on top of
{ if (IsEmpty()) throw StackException(“empty”); //the Stack

return S[tos--];
}

};

Figure 1. template class Stack.

Programming II template class Stack (array implementation)
CMSC 2613 Lecture 10

 2

Example: Program p01 reverses the characters of string “tilt” illustrating the last-in-first-out
character of a stack.
#ifndef Stack_h
#define Stack_h 1
struct StackException { //Stack Exception
 StackException(char* m)

{ cout << endl;
cout << “I am the Stack and I am “ << m << “.”;
cout << endl;

}
};
template <class T>
class Stack {
 int size; //Number of available elements
 int tos; //Index of the element on top of the stack
 T* S; //Points to storage for the stack
public:
 Stack(int sz=100):size(sz),tos(-1){S=new T[size];} //Constructor, allocate storage
 ~Stack(){if (S) delete[] S;} //Destructor, reclaim storage
 bool IsFull(void){return tos>=size-1;} //Is the Stack full?
 bool IsEmpty(void){return tos<0;} //Is the Stack empty?
 void Push(T v) //Put value v on top of the Stack

{ if (IsFull()) throw StackException(“full”);
S[++tos]=v;

}
T Pop(void) //Remove and return the value on top of
{ if (IsEmpty()) throw StackException(“empty”); //the Stack

return S[tos--];
}

};
#endif

Figure 2. File Stack.h

Programming II template class Stack (array implementation)
CMSC 2613 Lecture 10

 3

#include <iostream>
#include <iomanip>
#include <string>
using namespace std;
#include "Stack.h"
int main()
{ string t="tilt";
 Stack <char> S;
 for (int a=0;a<t.length();a++) S.Push(t[a]);
 cout << endl;
 while (!S.IsEmpty()) cout << S.Pop();
 cout << endl;
 return 0;
}

Figure 3. File p01.cpp

Program p01 prints:
tlit

Exercises:
1. Modify file p01.cpp given in this note so that the stack stores values of type double. Write a

program that will evaluate a postfix string. For example the postfix string “3 4 5 * +”
evaluates to 60.

2. A queue is a first-in-first-out (FIFO) data structure. Design a dequeue (pronounced “deck”)
that implements both a stack and a queue as a template.

