Programming Il template class Stack (array implementation)
CMSC 2613 Lecture 10

struct StackException { //Stack Exception
StackException(char* m)
{ cout<<endl
cout << “l am the Stack and | am “ << m << “.”;
cout << endl;
}
b
template <class 7>
class Stack {

int size; //Number of available elements
int tos; //Index of the element on top of the stack
T*S; //Points to storage for the stack
public:
Stack(int sz=100):size(sz),tos(-1){S=new T[size];}//Constructor, allocate storage
~Stack(){if (S) delete[] S;} //Destructor, reclaim storage
bool IsFull(void){return tos>=size-1;} //1s the Stack full?
bool IsEmpty(void){return tos<0;} //1s the Stack empty?
void Push(T v) //Put value v on top of the Stack

{ if (IsFull()) throw StackException(“full”);
S[++tos]=v;
}
T Pop(void) //Remove and return the value on top of
{ if (IsEmpty()) throw StackException(“empty”); //the Stack
return S[tos--];
}
b

Figure 1. template class Stack.




Programming Il template class Stack (array implementation)
CMSC 2613 Lecture 10

Example: Program pO1 reverses the characters of string “tilt” illustrating the last-in-first-out
character of a stack.

#ifndef Stack_h
#define Stack h 1
struct StackException { //Stack Exception
StackException(char* m)
{ cout<<endl
cout << “l am the Stack and I am “ << m << “.”;
cout << endl;
}
b
template <class 7>
class Stack {

int size; //Number of available elements
int tos; //Index of the element on top of the stack
T*S; //Points to storage for the stack
public:
Stack(int sz=100):size(sz),tos(-1){S=new T[size];}//Constructor, allocate storage
~Stack(){if (S) delete[] S;} //Destructor, reclaim storage
bool IsFull(void){return tos>=size-1;} //1s the Stack full?
bool IsEmpty(void){return tos<0;} //1s the Stack empty?
void Push(T v) //Put value v on top of the Stack

{ if (IsFull()) throw StackException(“full”);
S[++tos]=v;
}
T Pop(void) //Remove and return the value on top of
{ if (IsEmpty()) throw StackException(“empty”); //the Stack
return S[tos--];
}
b
#endif

Figure 2. File Stack.h




Programming Il template class Stack (array implementation)
CMSC 2613 Lecture 10

#tinclude <ijostream>
#include <iomanip>
#include <string>
using namespace std;
#include "Stack.h"

int main()
{ string t="tilt";
Stack <char> S;

for (int a=0;a<t.length();a++) S.Push(t[a]);
cout << endl;

while (1S.IsEmpty()) cout << S.Pop();

cout << endl;

return 0;

Figure 3. File pOl.cpp

Program p01 prints:
tlit

Exercises:

1. Modify file p01.cpp given in this note so that the stack stores values of type double. Write a
program that will evaluate a postfix string. For example the postfix string “3 4 5 * +”
evaluates to 60.

2. A queue is a first-in-first-out (FIFO) data structure. Design a dequeue (pronounced “deck”)
that implements both a stack and a queue as a template.




