
Programming II class Stack (array implementation)
CMSC 2613 Lecture 9

 1

Storage for a stack can be allocated and reclaimed as individual elements or storage can be
allocated for a group of elements and reclaimed as a group. In this note we will allocate storage
for a group of elements. An array is used to store the elements of a stack.

Since this course specifically addresses the management of storage for objects, we allocate and
reclaim storage for the stack dynamically.

To manage the stack, three variables are required.

1. size: Variable size retains the maximum number of elements available for the stack.
2. tos: Variable tos records the index of the element on top of the stack.
3. S: Variable S points to an array allocated to store elements on the stack.

We organize the foregoing variables as private members of class Stack. A pictorial
representation of class Stack is given in Figure 1.

Stack

Ssize tos

int intchar*

0

1

size-1

sz -1

Figure 1. Structure of class Stack

Successive characters are pushed on the stack moving downward from element zero (0).
Member tos records the index of the element on top of the stack. Member tos is incremented
before an element is stored on the stack and decremented after an element is removed from
the stack. Finding an initial value for member tos is determined by noting that element zero (0)
must store the value stored on the stack first. The maximum number of elements available for
the stack can be parameterized at the time the stack is declared. The value of variable sz,
containing the maximum number of available elements, is assigned to member size when the
stack is initialized.

Programming II class Stack (array implementation)
CMSC 2613 Lecture 9

 2

struct StackException {
StackException(char* m)
{ cout << endl << “I am the Stack and I am “ << m << “.” << endl;
}

};
class Stack {
 int size; //Number of available elements
 int tos; //Index of the element on top of the stack
 char* S; //Points to storage for the stack
public:
 Stack(int sz=100); //Constructor
 ~Stack(); //Destructor
 bool IsFull(void); //Is the Stack full?
 bool IsEmpty(void); //Is the Stack empty?
 void Push(char v); //Put v on top of the stack
 char Pop(void); //Return the character on top of the stack
};

Figure 2. class Stack.

Member functions:
1. Stack(int sz) Member function Stack is the constructor. The construction is called when an

object of type Stack is declared.
1.1. Initialize member size to the value stored in parameter sz.
1.2. Initialize member tos to –1. Negative one is chosen as a value that when incremented

will yield zero, the index of the first available element in array S.
1.3. Allocate storage referenced by member S.

2. ~Stack() Member function ~Stack is the destructor. The destruction is called when control

for an object of type Stack goes out of the scope where the object was declared.
2.1. Reclaim storage for the stack if, indeed, it was allocated.

3. bool IsFull(void) Member function IsFull determines if the stack is full. Element index values

i are: 10 −≤≤ sizei . The stack is full when 1−≥ sizetos .
3.1. Return true when member 1−≥ sizetos ; otherwise return false.

4. bool IsEmpty(void) Member function IsEmpty determines if the stack is empty. Element

index values i are: 10 −≤≤ sizei . The stack is empty when 0<tos .
4.1. Return true when member 0<tos ; otherwise return false.

5. void Push(char v) Member function Push places the value of parameter v on top of the

stack.
5.1. Throw exception StackException if the stack is full.
5.2. At least one element is available to store the value of parameter v; otherwise control

would have passed to the calling function.
5.3. Increment member tos to the index of the next available element.

Programming II class Stack (array implementation)
CMSC 2613 Lecture 9

 3

5.4. Store the value of parameter v in array S using tos as the index of the next available
element.

6. char Pop(void) Member function Pop returns the value on top of the stack.

6.1. Throw exception StackException if the stack is empty.
6.2. At least one element can be removed from the stack.
6.3. Obtain a copy of the element on top of the stack.
6.4. Decrement member tos to the index of the previous element stored on the stack.
6.5. Return the copy of the element on top of the stack.

Stack

Ssize tos

int intchar*

0

1

2

3

sz

(1)

Stack

Ssize tos

int intchar*

0

1

2

3

sz

(2)

Stack

Ssize tos

int intchar*

0

1

2

3

sz

Stack

Ssize tos

int intchar*

0

1

2

3

sz

Stack

Ssize tos

int intchar*

0

1

2

3

sz

(3)

(4) (5)

-1 0 1

2 3

t

i

l

t

t t

i

t

i

l

Figure 3. Successive snap shots of Stack S showing the characters of string “tilt”

Diagrams in Figure 3 show Stack S as the characters of string “tilt” are stored on it.

Exercises:
1. Modify file Stack.h given in this note so that it stores values of type double. Write a

program that will evaluate a postfix string. For example the postfix string “3 4 5 * +”
evaluates to 60.

Programming II class Stack (array implementation)
CMSC 2613 Lecture 9

 4

2. A queue is a first-in-first-out (FIFO) data structure. Design a dequeue (pronounced “deck”)
that implements both a stack and a queue.

