
Programming II Stacks and Palindromes
CMSC 2613 Lecture 8

Palindrome: A palindrome is a string that reads the same whether read forwards or backwards.
The same sequence of characters is produced when reading a palindrome left-to-right or right-to-
left.

Stack: A stack is an Abstract Data Type that stores objects in Last-In-First-Out (LIFO) order. The
last object put onto a stack is the first object retrieved from a stack.

4

3

2

1

Figure 1. Stack of Plates

Example: Plates dispensed in a cafeteria.
1. First, plate 1 is put on the stack.
2. Then, plate 2 is placed on top of the stack. Access to plate 1 is not possible without first

removing plate 2. Only the plate on top of the stack is accessible.
3. Put plates 3 and 4 on the stack. Now only plate 4 can be retrieved.

The last plate on the stack is the first plate to be retrieved. The last plate in the stack is the first
plate out of the stack.

Note that the plates are in reverse order. If I wanted to determine that an identifier was a
palindrome, I might want to put the characters of the identifier in reverse order.

Insight: A stack can be used to reverse the order of the characters in an identifier.

Palindrome checker algorithm: draft 1
1. Read an identifier. The identifier is a candidate to be a palindrome.
2. Store the characters of the candidate on a stack.
3. Extract the characters of the original candidate that was read in step one. Extract the

characters, one at a time, reading from left to right.
4. Compare the characters extracted in step 3 with characters popped from the stack.
5. If all the characters match then the candidate is a palindrome.
6. If one or more characters do not match then the candidate is not a palindrome.
7. Stop when the stack is empty and the last character is extracted from the original candidate-

identifier.

Example 1: Candidate is a palindrome
1. Read an identifier. The identifier is a candidate to be a palindrome. Peruse the candidate-

identifier "mom" in the figure below.

 1

Programming II Stacks and Palindromes
CMSC 2613 Lecture 8

m o m

0 1 2 3
character position

Figure 2. Candidate-identifier “mom”

2. Store the characters of the candidate on a stack.

tos

tos

tos

character in position 0

character in position 0

character in position 0

character in position 1

character in position 1
character in position 2

m

m

m

o

o

m

Figure 3. Pushing the characters of "mom" on the stack

3. Extract the characters of the original candidate that was read in step one. Extract the

characters, one at a time, reading from left to right.
4. Compare the characters extracted in step 3 with characters popped from the stack.
5. If all the characters match then the candidate is a palindrome.
6. If one or more characters do not match then the candidate is not a palindrome.
7. Stop when the stack is empty and the last character is extracted from the original candidate-

identifier.

 2

Programming II Stacks and Palindromes
CMSC 2613 Lecture 8

0

0

0

1

1

1

2

2

2

3

3

3

m

m

m

m

o

o

o

o

o

m

m

m

m

m

m

tos

tos

tos

Figure 4. Comparing the characters of the string "mom" with the characters of "mom" on the
stack

Example 1: Candidate is not a palindrome
1. Read an identifier. The identifier is a candidate to be a palindrome. Peruse the candidate-

identifier "tilt" in the figure below.

0 1 2 3 4
t i l t

Figure 5. Candidate-identifier "tilt"

2. Store the characters of the candidate on a stack.

t

i
l

t 3
2
1

0

stack

tos

Figure 6. Candidate-identifier "tilt" on a stack

3. Extract the characters of the original candidate that was read in step one. Extract the

characters, one at a time, reading from left to right.
4. Compare the characters extracted in step 3 with characters popped from the stack.
5. If all the characters match then the candidate is a palindrome.
6. If one or more characters do not match then the candidate is not a palindrome.

 3

Programming II Stacks and Palindromes
CMSC 2613 Lecture 8

7. Stop when the stack is empty and the last character is extracted from the original candidate-

identifier.

t
0

0

0

0

1

1

1

1

2

2

2

2

3

3

3

4

4
t

t

t

t

i

i

i

i

l

l

l

l

t

t

i l≠

tos

tos

Figure 6. Matching the characters in the candidate with the characters in the stack

 4

Programming II Stacks and Palindromes
CMSC 2613 Lecture 8

Create a program p02 that processes command line arguments

include <iostream>
include <fstream>
int main
{ process command line arguments

open stream ifs;
open stream ofs;
close stream ifs;
close stream ofs;
return 0;

}

1. Enhance program p02 to read the identifiers in stream ifs.

include <iostream.h>
include <fstream.h>
void palindromemgr

(istream& ifs
,ostream& ofs
)

{ read an identifier
 while the read operation was successful do
 { print the identifier
 read an identifier
 }
}
int main
{ process command line arguments

open stream ifs;
open stream ofs;
palindromemgr(ifs,ofs);
close stream ifs;
close stream ofs;
return 0;

}

2. Add logic to determine if the identifier is a palindrome.

include <stdio.h>
bool ispalindrome(char* candidate)
{ return 1;
}
void palindromemgr

(istream& ifs
,ostream& ofs
)

 5

Programming II Stacks and Palindromes
CMSC 2613 Lecture 8

{ do forever

read a candidate
test: Is the input file stream at end of file, exit the loop

 print a new line
 print the candidate
 print “ is”

print “ not” if the candidate is not a palindrome
print “ a palindrome.”

 end do

 }
}
int main
{ process command line arguments

open stream ifs;
open stream ofs;
palindromemgr(ifs,ofs);
close stream ifs;
close stream ofs;
return 0;

}

3. Find out what a palindrome is.

Palindrome: A palindrome is a string that reads the same whether read forwards or
backwards. The same sequence of characters is produced when reading a palindrome left-
to-right or right-to-left.

Examples:
3.1. mom is a palindrome
3.2. dad is a palindrome
3.3. totot is a palindrome
3.4. tom is not a palindrome
3.5. priscilla is not a palindrome

 6

Programming II Stacks and Brackets
CMSC 2613 Lecture 8

stack

 (((
 (((((
 [[[[[[[
 [[[[{ { { { { { { { { {
 ((((((((((((((((

 a ([b c] { d [((e))] }) f

no action

push (

push [

no action

no action

pop - m
atched pair

push {

no action

push [

push (

push (

no action

pop - m
atched pair

pop - m
atched pair

pop - m
atched pair

pop - m
atched pair

pop - m
atched pair

no action

return true - balanced

Figure 1. Algorithm for Finding Balanced Brackets
Balanced

 7

Programming II Stacks and Brackets
CMSC 2613 Lecture 8

stack

 [[
 (((

 a ([) b]

no action

push (

push [

pop - unm
atched pair -> not balanced

Figure 2. Algorithm for Finding Balanced Brackets
Unbalanced

 8

