
Programming II Lecture 6
CMSC 2613 Program Structure and makefiles

Translation Process
1. Macro Processor: source.cpp is

expanded by the macro processor. All
macros and #define's are replaced by
C++ code.

2. C++ Language Compiler: source.cpp,
having all macro directives removed, is
translated into object representation.
Only identifiers that are defined
elsewhere remain in plain text form.

3. Linkage Editor source.o is combined
with d C++ libraries and other .o files.
External references are resolved. An
executable file is created

Notes:
1. -g option directs the compiler to include

information for the source debugger,
gdb

2. -c option directs the compiler to produce
a relocatable object file. External
references are not resolved

3. -E option directs the compiler to stop
after invoking the macro processor. To
view the result of the macro processor
phase:

 $ g++ -E source.cpp > source.m
4. -o option directs the linker to assign the

name following the option to the
executable file produced. For example,

 $ g++ -o p01 p01.o list01.o
directs the linker to name the
executable file p01.

5. The linker (linkage editor) is invoked
when all the input files have a .o suffice
- when all the input files are relocatable
objects.

macro processor

C++ language compiler

source.cpp

linkage editor

executable

source.o

g++ -g -c source.cpp

g++ -o executable source.o -lm

Figure 1. Translation Process

 1

Programming II Lecture 6
CMSC 2613 Program Structure and makefiles

Programs consisting of multiple source
files

1. Compile all source files.

a. $g++ -c -g p01.cpp
b. $g++ -c -g List01.cpp

2. Link all objects
a. $g++ -o p01 p01.o List01.o -lm

Function prototypes
1. Inform the compiler how to call a

function.
2. Inform the compiler functions may be

defined elsewhere
3. Validate function prototypes against

actual function definitions

File organization.
1. File description comment
2. Author identification comment
3. Standard C++ Libraries
4. Application includes
5. Macro definitions
6. Class definitions
7. File global data
8. File functions

Include Files
1. The include file contains a class that

defines the abstract data type.
2. The .cpp file contains the

implementation of member functions in
the class.

3. Directs compiler how to call functions,
number and type of parameters and
return type

C++ Compiler C++ Compiler

p01.cpp List01.cpp

p01.o List01.o

linkage editor

p01

g++ -g -c p01.cpp g++ - g -c List01.cpp

g++ -o p01 p01.o List01.o -lm

Figure 2. Project 1 Translation

 2

Programming II Lecture 6
CMSC 2613 Program Structure and Makefiles

Makefiles
1. Form
 target file: source files
 instructions
2. File p01make contains

p01: p01.o List01.o
g++ -o p01 p01.o List01.o -lm

p01.o: p01.cpp List01.h
g++ -c -g p01.cpp

 List01.o: List01.cpp List01.h
 g++ -c -g List01.cpp
3. Invoking makefiles

$ make -f p01make
#--
File p01make contains instructions for creating executable file p01. Executable file
p01 is the program for project p01, CS2613, Programming II.
#--
Author: Ms. Petunia Perfect
Student ID: *00000000
E-Mail: pperfect@uco.edu
Course: CS2613, Programming II
CRN: 10847, Autumn, 2003
Project: p01
Due: September 9, 2003
Account: tt000
#--
Object files
#--
obj = p01.o List01.o
#--
Link object files into executable file p01
#--
p01: ${obj}
 g++ -o p01 ${obj} –lm
#--
Compile p01.cpp that exercises class List
#--
p01.o: p01.cpp List01.h
 g++ -g –c p01.cpp
#--
Compile List.cpp that implements class List
#--
List01.o: List01.cpp List01.h
 g++ -g –c List01.cpp

Figure 3. File p01make

 3

mailto:pperfect@uco.edu

Programming II Lecture 6
CMSC 2613 Program Structure and Makefiles

File p01make notes:
1. Lines beginning with a # sign are comments

2. One or more UNIX tabs begin lines that are
indented. There is no substitute for an UNIX tab.
Code a UNIX tab using an editor on the
department computer. A tab in a PC or Windows
editor does not translate reliably to an UNIX tab.

 4

