Programming Il Lecture 4

CMSC 2613 References
1. #include <iostream>
2. using namespace std;
3. void swap (int* m, int* w)
4, { intb;
5. b=*m;
6. *m=*w;
7. *w=b;
8. }
9. intmain()
10. { into=1, b=2;
11. cout << endl << “a=" << g << " b=" << b;
12. swap(&a,&b);
13. cout << endl << “a=" << a << " b=" << b;
14. return 0;
15. }

Figure 1. Program p01

Program p01 produces:

a=1 b=2
a=2 b=1

Program p01 notes:

1.
2.

3.

Function swap is required to interchange the values of variables a and b.

Since all arguments are passed by value in C programs, passing copies of the values of
variables a and b to parameters of swap will not accomplish the stated goal for function
swap. Copies of the values assigned to the formal parameters of function swap will be
discarded when function swap returns.

Thus, the addresses of variables a and b must be passed to function swap. The addresses of
variables a and b in function swap will allow function swap to interchange their values.
Please refer to figure 2.

address variable type value
0003 w int* | 0001

swap -
0002 | m | int* | 0000
o001 | b int 2
main
0000 | a int 1

Figure 2. Activation records for program p01

The statements in function swap are illustrated in figures 3, 4, 5, and 6. The diagram in
figure 3 represents the state of function swap just after line 4. The diagram in figure 4
shows the values of formal parameters m and w and local variable b after line 5. Figure 5
depicts parameters m and w and variable b after line 6 and figure 6 shows the values of
parameters m and w and variable b just before function swap returns.

Programming Il Lecture 4
CMSC 2613 References
m w b
int* int* int

a b
int int
1 2
Figure 3. Function swap just after line 4
m w b
int* int* int
1
a b
int int
1 2
Figure 4. Function swap just after line 5
m w b
int* int* int
1
a b
int int
2 2
Figure 5. Function swap just after line 6
m w b
int* int* int
1
a b
int int
2 1

Figure 6. Function swap just before it returns

Programming Il Lecture 4

CMSC 2613 References
1. #include <jostream>
2. using namespace std;
3. void swap (int& m, int& w)
4, { intb;
5. b=m;
6. m=w;
7. w=b;
8. }
9. intmain()
10. { into=1, b=2;
11. cout << "\na="<<ag<<" b="<< b;
12. swap(a,b);
13. cout << "\na="<<g<<" b="<< b;
14. return 0;
15. }

Figure 7. Program p02

Program p02 produces:

a=1 b=2
a=2 b=1

Program p02 notes:

1.
2.

Function swap is required to interchange the values of variables a and b.

Formal parameters m and w are references. References are known by the & operator
following the type. The type-name and the & together are the complete type.

A reference is an alias. An alias is another name for an object. In figure 7, formal parameter
m is an alias for variable a. Variable a is bound to formal parameter m when function swap
is called. Variable a is the first argument of function swap.

The significance of a reference is that whenever an action is performed on the alias it is also
performed on the original object. Thus, when the value of formal parameter w is accessed
on line 6, the value of variable a declared on line 10 is actually retrieved. Formal parameter
w is another name for variable a.

The reference syntax is an enhancement to C available in C++.

The actions in program p02 are identical in every respect to the actions performed in
program pO01.

