Programming Il

Lecture 2

CMSC 2613 Structures and Classes
1. #include <jostream>
2. using namespace std;
3. struct Rectangle {
4, double /ength;
5. double width;
6. b
7. int main()
8. { Rectangle R={12.5,7};
9. cout << "length=" << R.length;
10. cout<<"";
11. cout << " width=" << R.width;
12. cout << endl;
13. return 0;
14. }

Figure 1. Program p01

Program p01 produces:
length=12.5 width=7

Program p01 notes:

1. Program p01 illustrates how the structure-type-specifier can be used to create a type in C++.
2. The grammar for C++ has been enhanced to permit the tag-name to be used everywhere.
This is a welcome addition eliminating the more cumbersome typedef declaration (not

shown).

3. Rectangle R is initialized on line 8. Note the initialization syntax. Values enclosed in curly
braces and separated by commas are assigned to members in the order that they are

declared.

1. #include <jostream>

2. using namespace std;

3. struct Rectangle {

4, double length;

5. double width;

6. double Area(void){return length*width;}

7. }

8. int main()

9. { Rectangle R={12.5,7};
10. cout << "length=" << R.length ;
11. cout<<"";
12. cout << " width=" << R.width ;
13. cout<<"";
14. cout << " Area=" << R.Area();
15. cout << endl;
16. return 0;
17. '}

Figure 2. Program p02

Programming Il Lecture 2
CMSC 2613 Structures and Classes

Program p02 produces:
length=12.5 width=7 Area=87.5

Program p02 notes:

1. Program p02 illustrates member functions.

2. The grammar for C++ permits members that are functions as well as members that contain
data. Observe function Area that is defined on line 6 on figure 3.

3. Member functions are accessed in exactly the same way as member data. The structure
name is given first, followed by a period, and the member function name appears last. Do
not forget the argument list even if it is empty.

4. Note references to members length and width in member function Area on line 6 in figure 3.
Members of a structure do not need to be qualified by their structure name in member
functions.

1. #include <iostream>
2. using namespace std;
3. struct Rectangle {
4. private:
5. double length;
6. double width;
7. public:
8. Rectangle(double /, double w):length(l),width(w){};
9. double Area(void){return length*width;}
10. double Length(void){return length;}
11. double Width(void){return width;}
12. %
13. int main()
14. { Rectangle R(12.5,7);
15. cout << "length=" << R.Length() ;
16. cout<<"";
17. cout << "width=" << R.Width() ;
18. cout<<"";
19. cout << "Area=" << R.Area();
20. cout << endl;
21. return 0;
22. }

Figure 3. Program p03

Program p03 produces:
length=12.5 width=7 Area=87.5

Program p03 notes:

1.

2.
3.
4.

Program p03 illustrates private and public members of a structure.

The directive private makes members length and width available to member functions only.

The directive public makes members available to any function in the file.

Since private members cannot be accessed in function main alternative arrangements must
be made to obtain their values. Create public member functions Length and Width to return
the values of corresponding private members.

Programming Il Lecture 2
CMSC 2613 Structures and Classes

5.

Program p03 illustrates a constructor.

5.1. A constructor is a member function having the same name as the structure name.

5.2. A constructor is a member function having no return type.

5.3. A constructor is called when a structure is allocated. A constructor is called when the
structure name is used to declare a variable of that type. Structure R, having type
Rectangle, is declared on line 18 of figure 3. The constructor (a member function) is
called on line 14 of figure 3.

5.4. The values of the arguments of a constructor are used to initialize private member
data. A special syntax is given to facilitate this goal. Members of a structure can be
initialized between the parameter list and the body of the function. This syntax is only
available for constructors. A colon follows the closing parenthesis of the parameter list.
Then, member names are listed. Commas separate member names. After each
member name parentheses enclose the value to be assigned to the member. Formal
parameter / is assigned to private member length and formal parameter w is assigned
to member width using the special syntax to initialize members in constructor
Rectangle.

1. #include <jostream>
2. using namespace std;
3. class Rectangle {
4, double length;
5. double width;
6. public:
7. Rectangle(double /, double w) :length(/), width(w) {}
8. double Area(void){return length*width;}
9. double Perimeter(void) {return 2*(length + width);}
10. double Length(void){return length;}
11. double Width(void) {return width;}
12.)%
13. int main()
14. { Rectangle R(12.5,7);
15. cout << "length=" << R.Length() << ;
16. cout<<™"";
17. cout << "width=" << R.Width() ;
18. cout<<™"™";
19. cout << "Area=" << R.Area();
20. cout<<™"™";
21. cout << "Perimeter=" << R.Perimeter() ;
22. cout << endl;
23. return 0;
24, '}

Figure 4. Program p04

Program p04 produces:
length= 12.5 width=7 Area=87.5 Perimeter=39

Programming Il
CMSC 2613

Program p04 notes:

1. Program p04 illustrates the relationship between a class and a structure.
2. A class is a structure where members are private by default. Public members must be
explicitly identified Members of a structure are public by default. Note the reserve word
class on line 3 of figure 4.
3. Observe the additional member function Perimeter defined on line 9 and called on line 21.
1. #include <iostream>
2. using namespace std;
3. #include "Rectangle05.h"
4. int main()
5. { Rectangle R(12.5,7);
6. cout << "length=" << R.Length() ;
7. cout<<"";
8. cout << " width=" << R.Width() ;
9. cout<<"";
10. cout << " Area=" << R.Area();
11. cout<<"";
12. cout << " Perimeter=" << R.Perimeter() ;
13. cout << end/;
14. return 0;
15. '}
Figure 5. File p05.cpp
1. #ifndef Rectangle05_h
2. #define Rectangle05_h 1
3. class Rectangle {
4, double /ength;
5. double width;
6. public:
7. Rectangle(double I, double w);
8. double Area(void);
9. double Perimeter(void);
10. double Length(void);
11. double Width(void);
12.)%
13. #endif
Figure 6. File Rectangle05.h
1. #include "Rectangle05.h"
2. Rectangle::Rectangle(double /, double w):length(/), width(w) {}
3. double Rectangle::Perimeter(void){return 2*(/length + width);}
4. double Rectangle::Area(void){return length*width;}
5. double Rectangle::Length(void){return length;}
6. double Rectangle::Width(void){return width;}

Figure 7. File Rectangle05.cpp

Structures and Classes

Programming Il

Lecture 2

CMSC 2613 Structures and Classes

H

b3

Object files

obj = p05.0 Rectangle05.0

Create executable file p05

p05: ${obj}
g++ -0 p05 ${obj} -Im

Compile file p05.cpp

H

p05.0: p05.cpp Rectangle05.h
g++ -c -g p05.cpp

H

o

Compile file Rectangle05.cpp

H

o

Rectangle05.0: Rectangle05.cpp Rectangle05.h
g++ -c -g Rectangle05.cpp

Figure 8. File pO5make.

Program p05 produces:
length=12.5 width=7 Area=87.5 Perimeter=39

Program p05 notes:
1. Program pO05 is created by issuing the Linux command
$ make —f p05make
1.1. After entering the foregoing command one can expect LINUX to respond
g++-c -g p05.cpp
g++ -c -g Rectangle05.cpp
g++ -0 p05 p05.0 Rectangle05.0 -Im
2. Program p05 illustrates program structure for a class in C++.
3. Aclass has an interface and an implementation.

3.1. Interface: The interface to a class is the .h file in C++. The .h file contains the definition

of the class. Member data and member functions are defined in the class.

Member

functions define the valid operations on a variable that has the type given by the class.
Member functions, Length, Width, Area, and Perimeter define the valid operations on a
variable of type Rectangle. Member data define the representation of the type.
Member data define the set of values that a variable of the type specified by the class
can take on. Member data are hidden from the users of the class. Native type double
simulates a real number. For example, a variable of type double is represented by an
IEEE 754 double binary specification. A value that conforms to the IEEE 754 double
binary specification has three components, a sign, a characteristic, and a fraction. The
programmer is completely unaware of these three components. The operations

Programming Il Lecture 2
CMSC 2613 Structures and Classes

defined for a variable of type double are complete. These operations are addition,
subtraction, multiplication, division, and the like.

3.2. Implementation: A class is implemented in a file having a .cpp suffix. The bodies of
member functions appear in the .cpp file.

3.2.1.:: - The global resolution operator. The class name and the global resolution
operator must qualify all member function names when the function is defined in
the .cpp file. For example function Area.
double Rectangle::Area(void){return length*width;}

The class name is Rectangle and the global resolution operator is ::. Note that the
name Area is qualified using Rectangle::Area.

4. Separate files. It is probably best to begin developing your programs in a single file. When
the program functions satisfactorily, the program can be separated into separate files. The
steps below can be used to split a single file containing one class into three files.

4.1. Make two additional copies of the source file. For example, assume file p05.cpp,
initially is identical to file p04.cpp.
$ cp p05.cpp Rectangle05.cpp
$ cp p05.cpp Rectangle05.h

One of the copies will be edited to become the class interface, the .h file.
The copy will be edited to become the class implementation, the .cpp file.
Finally, the original file will be edited to become the file that exercises the class.

4.2. Making the .h file.
4.2.1.At the top of the file insert the two directives #ifndef ..., #define. For example, in
file Rectangle05.h, insert

#ifndef Rectangle05_h
#define Rectangle05_h 1

4.2.2.At the bottom of the file insert the directive #endif. For, example, in file
Rectangle05.h insert.

#tendif

4.2.3.Keep the author identification comment, the copyright notice, C++ include file
directives and, most important of all, keep the class definition. For example, in file
Rectangle05.h, keep the following.

#ifndef Rectangle05_h
#define Rectangle05_h 1

/1

//File description comment

/]

//Author identification comment

//
//Copyright notice

/1

Programming Il Lecture 2
CMSC 2613 Structures and Classes

//C++ include files

1/l

#include <iostream>

using namespace std;

/1

//class description comment

//

class Rectangle {

b
#endif

4.2.4.Remove everything after the semicolon that terminates the class as shown above.

4.2.5.Make all the member functions function prototypes. Replace the bodies of all
member functions with a semicolon as shown in figure 6.

5. Making the .cpp file.

5.1.1.Remove everything that follows the }; that terminates the class. Then, remove the
}; also.

5.1.2.Remove everything from the class definition that is not a member function.

5.1.3.Qualify all member function names in the function header with the class name and
the global resolution operator. For example, change

double Area(void){return length*width;}
to
double Rectangle::Area(void){return length*width;}

5.1.4.After the C++ include files but before the member functions insert an include
directive that causes the class interface definition to be included. In file

Rectangle05.cpp,

/l

//[File description comment

/l

//Author identification comment
//

//Copyright notice

/l

//C++ include files

/l

#include <iostream>

using namespace std;

//
//Application include files

/1

Programming Il Lecture 2
CMSC 2613 Structures and Classes

#include “Rectangle05.h”
//
Rectangle::Rectangle(double /, double w):length(/), width(w) {}
double Rectangle::Perimeter(void){return 2*(length + width);}
double Rectangle::Area(void){return length*width;}

double Rectangle::Length(void){return length;}

double Rectangle::Width(void){return width;}

5.1.5.Finally, remove all default parameter initialization expressions. For example, if the
constructor had initial values for parameters | and w, they would have to be
removed.
change
Rectangle::Rectangle(double /=0, double w=0):/length(l), width(w) {}

to

Rectangle::Rectangle(double /, double w):length(l), width(w) {}

