Programming Il Command Line Arguments
CMSC 2613 Lecture 1

Problem: We want to parameterize our programming projects so that files containing input data
and files providing results are named on the command line. If such files are not provided on the
command line, we want our program to prompt for such files.

Programming project p00, for example, accepts a single input file and produces a single output
file. Under ordinary circumstances the command line would look like:

$ p00 i00.dat 000.dat

1. File p00 is the first string that appears on the command line and contains the executable
form of project 1.

2. File i00.dat is the second string that appears on the command line and contains input data.
File i00.dat is the first command line parameter.

3. File o00.dat is the third string that appears on the command line and contains results
produced by project p00. File 000.dat is the second command line parameter.

Another acceptable way to execute project p00 is:

$ p00 i00.dat
Enter the output file name: 000.dat

1. File p00 is the first string that appears on the command line contains the executable form of
project 1.

2. File i00.dat is the second string that appears on command line and contains input data

3. The prompt

Enter the output file name:

is produced by the program p00 when fewer than three strings appear on the command
line.
4. The response, 000.dat, is entered by the user.

The third and last way program p00 can be invoked is:

$ p00
Enter the input file name: i00.dat
Enter the output file name: 000.dat

1. File p00 is the first and only string that appears on the command line contains the
executable form of project 1.
2. The prompt
Enter the input file name:
is produced by program p00 when only one string appears on the command line.
3. The user enters the response, i00.dat.

Programming Il Command Line Arguments
CMSC 2613 Lecture 1

4. The prompt
Enter the output file name:
is produced by the program p00 when fewer than three strings appear on the command
line.

5. The response, 000.dat, is entered by the user.

Command line arguments are stored as an array of strings. For example, given the command
$ p00 i00.dat 000.dat

and the C++ program in Figure 1.

int main(int argc, char* argv[]) { return 0; }

Figure 1. C++ program declarations for command line arguments

argv

o [l [0 1N
s [F—{ioTol e a[: N
2 [(F—[eTo o e[+ [:]\

Figure 2. Command line arguments

Integer parameter argc stores the number of arguments, the argument count. Array argv
contains pointers to the separate strings on the command line.

Processing command line arguments proceeds by determining the number of arguments: |If
fewer than the requisite number of arguments are supplied, then the missing arguments must
be obtained from the user. Once all the arguments are obtained, corresponding files may be
opened.

Programming Il Command Line Arguments
CMSC 2613 Lecture 1

Function main. Function main always returns a value of type int. It is true that most compilers
will not generate a compilation error for the program in figure 3. However, function main
always returns an integer code to the operating system. An integer code of zero (0) indicates
that the program functioned correctly. Non-zero values indicate that an error occurred. In this
course, function main always returns a value of type int and the program in figure 3, in this
course, is always wrong.

void main(int argc, char* argv[]) { }

Figure 3. void main() { ... }
always wrong.

Consider the first part of the problem. Process command line arguments. The program in
Figure 3 processes command line arguments.

#include <cstdlib>
#include <cstring>
#tinclude <ijostream>
#include <fstream>
#include <string>
using namespace std;
struct CommandLineException {
CommandLineException(int max,int actual)
{ cout<<endl << “Too many command line arguments.” << endl,
cout << “A maximum of “ << max << “ arguments are permitted.” << end/;
cout << actual << “ arguments were entered.” << endl;

b

struct FileException {
FileException(const char* fn)
{ cout << endl << “File “ << fn << “ could not be opened.” << end|;
}

b

Figure 3. C++ program that processes command line arguments

Programming Il Command Line Arguments

CMSC 2613 Lecture 1
int main(int argc, char* argvl[])
{ try{
char ifn[255], ofn[255]; //Input and output file names
switch (argc) {
case 1: //Prompt for both file names
cout << "Enter the input file name. ";
cin >> ifn;
cout << "Enter the output file name. ";
cin >> ofn;
break;
case 2: //Prompt for the output file name
strcpy(ifn,argv[1]);
cout << "Enter the output file name. ";
cin >> ofn;
break;
case 3: //Both file names are arguments
strepylifn,argvl1]);
strepy(ofn,argv([2]);
break;
default:
throw CommandLineException(2,argc-1);
break;
}
ifstream i(ifn); if (1i) throw FileException(ifn);
ofstream o(ofn); if (10) throw FileException(ofn);
//Read the input file, process input data, and write to the output file here
o.close();
i.close();
}catch(...){
cout << “Program terminated.” << end/;
exit(EXIT_FAILURE);
}
return 0;
}
Figure 3. C++ program that processes command line arguments
(continued)
Notes:
1. Include file iostream defines standard input and output classes for C++.
2. Include file fstream defines file structures and operations files (streams) in C++.
3. Include file string defines functions for C++ strings and standard C strings.
4. cout << is the C++ equivalent of printf(...)
5. cin>>is the C++ equivalent of scanf(...)

Programming Il Command Line Arguments
CMSC 2613 Lecture 1

6.

10.

11.

12.

Declarations need only appear before they are used. Declarations do not need to precede
executable statements. Thus, the declaration

ifstream i ...;
does not appear directly after a {.
The declaration

ifstream i ...;

defines variable i. Variable i is an input file stream. An input file stream is equivalent to type
FILE.

Variable i is initialized to the string referenced by variable ifn in the declaration ifstream
i(ifn); The equivalent declaration in Cis FILE* i=fopen(ifn,”r");
Input file stream i is closed by the statement i.close(); The equivalent C syntax is fclose(i);
Constructor CommandLineException is called when more than two file names are entered
on the command line. Constructor CommandLineException prints the appropriate error
message.
Constructor FileException is called when the input file cannot be opened. The most likely
reason for this failure is that the input file does not exist in your local directory. Copy or
create the input file whose name you entered on the command line in your local directory.
Exceptions are managed in the
try {

//Monitor exceptions
}catch(..){

//Respond to exceptions here

try-clause. Code that may cause an exception is placed in the compound statement
between the try and catch reserve words. The programmer codes the appropriate response
to an exception in the compound statement following the catch reserve word. Each
exception may be caught and code specific to that exception may be designed. The clause
catch (...) catches all exceptions.

