

Author Identification Block

Author: Ms. Petunia Perfect
Student ID: *00000000
E-Mail: pperfect@uco.edu
Course: CMSC 2123 – Discrete Structures
CRN: 21389, Spring, 2014
Project: p05
Due: March 24. 2014
Account: tt000

Scoring Block			
Component	Available	Earned	Explanation
Compilation			
Submission Instructions	1	1	
Author Identification	1	1	
Fragment 5 Analysis	10	10	
Command Line	4	4	
Output file	4	4	
Fragment 5 Results	10	10	
Total	30	30	

Code Fragment 5 Analysis:

1. Find $f(n)$. Let $f(n)$ be the fastest growing term in $T(n)$ with its coefficient removed.

$$f(n) =$$

2. Find C .

2.1. $C = C_{min} + \Delta$, where $\Delta = 1$ (in many cases).

$$2.2. C_{min} = \lim_{n \rightarrow \infty} \frac{T(n)}{f(n)} = \lim_{n \rightarrow \infty} -$$

2.3. In practice, C_{min} is the coefficient of the fastest growing term in $T(n)$.

3. $C = \Delta + = 1 + =$

4. Find n_0 .

4.1. Solve $|T(n_0)| \leq C|f(n_0)|$

4.2. Choose an integer value for n_0 . Let $n_0 =$.

We have shown that $T(n) = \Theta()$ because we have found witnesses $C =$ and $n_0 =$.

File p05.cpp: