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Introduction 
Good morning.  Suppose that a flock of 20 pigeons flies into a set of 19 pigeonholes to roost.  
Because there are 20 pigeons but only 19 pigeonholes, at least one of these 19 pigeonholes must 
have at least two pigeons in it.  To see why this is true, note that if each pigeonhole had at most 
one pigeon in it, at most 19 pigeons, one per hole, could be accommodated.  This illustrates a 
general principle called the pigeonhole principle, which states that if there are more pigeons than 
pigeonholes, then there must be at least one pigeonhole with at least two pigeons in it.  Of course, 
this principle applies to other objects besides pigeons and pigeonholes. 
 

THEOREM 1 THE PIGEONHOLE PRINCIPLE.  If k is a positive integer and 𝑘𝑘 + 1 or more 
objects are placed into k boxes, then there is at least one box containing two 
or more of the objects. 

 
COROLLARY 1 A function f from a set with 𝑘𝑘 + 1 or more elements to set with k elements is 

not one-to-one. 
 
 

EXAMPLE 1 Among any group of 367 people, there must be at least two with the same 
birthday, because there are only 366 possible birthdays. 

 
EXAMPLE 2 In any group of 27 English words, there must be at least two with the same 

first letter because there are 26 letters in the English alphabet. 
 

EXAMPLE 3 How many students must be in a class to guarantee that at least two students 
receive the same score on the final exam, if the exam is graded on a scale from 
0 to 100 points? 

 Solution:   There are 101 possible scores on the final.  The pigeonhole principle 
shows that among any 102 students there must be at least 2 students with 
the same score. 

 
The Generalized Pigeonhole Principle 
 

THEOREM 2 THE GENERALIZED PIGEONHOLE PRINCIPLE.  If N objects are placed into k 
boxes, then there is at least one box containing ⌈𝑁𝑁/𝑘𝑘⌉ objects. 

 
EXAMPLE 5 Among 100 people there are least ⌈100/12⌉ = 9 who were born in the same 

month. 
 

EXAMPLE 6 What is the minimum number of students required in a discrete mathematics 
class to be sure that at least six will receive the same grade, if there are five 
possible grades, A, B, C, D, and F? 
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 Solution:   The minimum number of students needed to ensure that at least 
six students receive the same grade is the smallest integer N such 
that ⌈𝑁𝑁/5⌉ = 6.  The smallest such integer is 𝑁𝑁 = 5 ∙ 5 + 1 = 26.  If you have 
only 25 students, it is possible for there to be five who have received each 
grade so that no six students have received the same grade.  Thus, 26 is the 
minimum number of students needed to ensure that at least six students will 
receive the same grade. 

 
EXAMPLE 7.1 How many cards must be selected from a standard deck of 52 cards to 

guarantee that at least three cards of the same suit are chosen? 
 Solution:   Suppose there are four boxes, one for each suit, and as cards are 

selected they are placed in the box reserved for cards of that suit.  Using the 
generalized pigeonhole principle, we see that if N cards are selected, there is 
at least one box containing ⌈𝑁𝑁/4⌉ cards.  Consequently, we know that at least 
three cards of one suit are selected if ⌈𝑁𝑁/4⌉ ≥ 3. The smallest integer N such 
that ⌈𝑁𝑁/4⌉ ≥ 3 is 2 ∙ 4 + 1 = 9, so nine cards suffice.  Note that if eight cards 
are selected, it is possible to have two cards of each suit, so more than eight 
cards are needed.  Consequently, nine cards must be selected to guarantee 
that at least three cards of one suit are chosen.  One good way to think about 
this is to note that after the eighth card is chosen, there is no way to avoid 
having a third card of some suit.  

 
EXAMPLE 7.2 How many cards must be selected to guarantee that at least three hearts are 

selected? 
 Solution:   We do not use the generalized pigeonhole principle to answer this 

question, because we want to make sure that there are three hearts, not just 
three cards of one suit.  Note that in the worst case, we can select all the clubs, 
diamonds, and spades, 39 cards in all, before we select a single heart.  The 
next three cards will be all hearts, so we may need to select 42 cards to get 
three hearts. 

 
EXAMPLE 8 What is the least number of area codes needed to guarantee that the 25 

million phones in a state can be assigned distinct 10-digit telephone numbers?  
(Assume that telephone numbers are of the form NXX-NXX-XXXX, where the 
first three digits form the area code.  N represents a digit from 2 to 9 and X 
represents any digit. 

 Solution:   There are eight million different phone numbers of the form NXX-
XXXX (as shown in Example 8 of Section 6.1).  Hence, by the generalized 
pigeonhole principle, among 25 million telephones, at least ⌈25,000,000/
8,000,000⌉ of them must have identical phone numbers.  Hence, at least four 
area codes are required to ensure that all 10-digit numbers are different. 
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Some Elegant Applications of the Pigeonhole Principle 
 

EXAMPLE 10 During a month with 30 days, a baseball team plays at least one game a day, 
but no more than 45 games.  Show that there must be a period of some 
number of consecutive days during which the team must play exactly 14 
games. 

 Solution:   Let 𝑎𝑎𝑗𝑗 be the number of games played on or before the jth day of 
the month.  Then 𝑎𝑎1,𝑎𝑎2,⋯ ,𝑎𝑎30 is an increasing sequence of distinct positive 
integers, with 1 ≤ 𝑎𝑎𝑗𝑗 ≤ 45. Moreover 𝑎𝑎1 + 14,𝑎𝑎2 + 14,⋯ ,𝑎𝑎30 + 14 is also 
an increasing sequence of distinct positive integers, with 15 ≤ 𝑎𝑎𝑗𝑗 + 14 ≤ 59. 
 
The 60 positive integers 𝑎𝑎1,𝑎𝑎2,⋯ ,𝑎𝑎30,𝑎𝑎1 + 14,𝑎𝑎2 + 14,⋯ ,𝑎𝑎30 + 14  are all 
less than or equal to 59.  Hence, by the pigeonhole principle two of these 
integers are equal.  Because the integers 𝑎𝑎𝑗𝑗, 𝑗𝑗 = 1, 2,⋯ ,30 are all distinct and 
the integers 𝑎𝑎𝑗𝑗 + 14, 𝑗𝑗 = 1, 2,⋯ , 30 are all distinct, there must be indices i 
and j with 𝑎𝑎𝑖𝑖 = 𝑎𝑎𝑗𝑗 + 14.  This means that exactly 14 games were played from 
day 𝑗𝑗 + 1 to day i. 

 
EXAMPLE 11 Show that among any 𝑛𝑛 + 1 positive integers not exceeding 2𝑛𝑛 there must be 

an integer that divides one of the other integers. 
 Solution:   Write each of the 𝑛𝑛 + 1 integers 𝑎𝑎1,𝑎𝑎2,⋯ ,𝑎𝑎𝑛𝑛+1 as a power of 2 

times an odd integer.  In other words, let 𝑎𝑎𝑗𝑗 = 2𝑘𝑘𝑗𝑗𝑞𝑞𝑗𝑗 for , 𝑗𝑗 = 1, 2,⋯ ,𝑛𝑛 + 1, 
where 𝑘𝑘𝑗𝑗 is a nonnegative integer and 𝑞𝑞𝑗𝑗 is odd. 

 
 

THEOREM 3 Every sequence of 𝑛𝑛2 + 1 distinct real numbers contains a subsequence of 
length 𝑛𝑛 + 1 that is either strictly increasing or strictly decreasing. 

 
EXAMPLE 12 The sequence 8, 11, 9, 1, 4, 6, 12, 10, 5, 7 contains 10 terms.  Note that 10 =

32 + 1.  There are four increasing subsequences of the length four, namely 1, 
4, 6, 12; 1, 4, 6, 7; 1, 4, 6, 10; and 1, 4, 5, 7.  There is also a decreasing 
subsequence of length four, namely 11, 9, 6, 5. 

 
EXAMPLE 13 Assume that in a group of six people, each pair of individuals consists of two 

friends or two enemies.  Show that there are either three mutual friends or 
three mutual enemies in the group. 

 Solution:  Let 𝐴𝐴 be one of the six people.  Of the five other people in the group, 
there are either three or more who are friends of 𝐴𝐴, or three or more who are 
enemies of 𝐴𝐴.  This follows from the generalized pigeonhole principle, 
because when five objects are divided into two sets, one of the sets has at 
least ⌈5 2⁄ ⌉ = 3  elements.  In the former case, suppose that 𝐵𝐵,𝐶𝐶, and 𝐷𝐷 are 
friends of 𝐴𝐴.  If any two of these three individuals are friends, then these two 
and 𝐴𝐴 form a group of three mutual friends.  Otherwise, 𝐵𝐵,𝐶𝐶, and 𝐷𝐷 form a 
set of three mutual enemies.  The proof in the latter case, when there are 
three or more enemies of 𝐴𝐴, proceeds in a similar manner. 
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1. Show that in any set of six classes, each meeting regularly once a week on a particular day of 
the week, there must be two that meet on the same day, assuming that no classes are held 
on the weekends. 
Solution: 
There are six classes: these are the pigeons.  There are five days on which classes may meet 
(Monday through Friday): these are the pigeonholes.  Each class must meet on a day (each 
pigeon must occupy a pigeonhole).  By the pigeonhole principle at least one day must 
contain at least two classes. 

 
3. A drawer contains a dozen brown socks and a dozen black socks, all unmatched. A man takes 

socks out at random in the dark. 
a) How many socks must he take out to be sure that he has at least two socks of the same 

color? 
Solution: 
There are two colors: these are the pigeonholes. We want to know the least number of 
pigeons needed to insure that at least one of the pigeonholes contains two pigeons. By 
the pigeonhole principle, the answer is 3. If three socks are taken from the drawer, at 
least two must have the same color. On the other hand, two socks are not enough, 
because one might be brown and the other black.  Note that the number of socks was 
irrelevant (assuming it was at least 3). 
 

b) How many socks must he take out to be sure that he has at least two black socks? 
Solution: 
He needs to take out 14 socks in order to insure at least two are black socks. If he does 
so, then at most 12 of them are brown, so at least two are black.  On the other hand, if 
he removes 13 or fewer socks, then 12 of them could be brown, and he might not get 
his pair of black socks.  This time the number of socks did matter. 

 
 
7. Let 𝑛𝑛 be a positive integer.  Show that in any set of 𝑛𝑛 consecutive integers there is exactly one 

divisible by 𝑛𝑛. 
Solution: 
Let the 𝒏𝒏 consecutive integers be denoted 𝒙𝒙 + 𝟏𝟏,𝒙𝒙 + 𝟐𝟐, … ,𝒙𝒙 + 𝒏𝒏, where 𝒙𝒙 is some integer.  
We want to show that exactly one of these is divisible by 𝒏𝒏.  There are 𝒏𝒏 possible 
remainders when an integer is divided by 𝒏𝒏, namely 𝟎𝟎,𝟏𝟏,𝟐𝟐, … ,𝒏𝒏 − 𝟏𝟏.  There are two 
possibilities for the remainders in our collection of 𝒏𝒏 numbers: either they cover all the 
possible remainders (in which case exactly one of our numbers has a remainder of 0 and is 
therefore divisible by 𝒏𝒏), or they do not.  If they do not, then by the pigeonhole principle, 
since there are then fewer than 𝒏𝒏 pigeonholes (remainders) for 𝒏𝒏 pigeons (the numbers in 
our collection), at least one remainder must occur twice.  In other words, it must be the 
case that 𝒙𝒙 + 𝒊𝒊 and 𝒙𝒙 + 𝒋𝒋 have the same remainder when divided by 𝒏𝒏 for some pair of 
numbers 𝒊𝒊 and 𝒋𝒋 with 𝟎𝟎 < 𝒊𝒊 < 𝒋𝒋 ≤ 𝒏𝒏.  Since 𝒙𝒙 + 𝒊𝒊 and 𝒙𝒙 + 𝒋𝒋 have the same remainder when 
divided by 𝒏𝒏, if we subtract 𝒙𝒙 + 𝒊𝒊 from 𝒙𝒙 + 𝒋𝒋, then we will get a number divisible by 𝒏𝒏.   This 
means that 𝒋𝒋 − 𝒊𝒊 is divisible by 𝒏𝒏.  But this is impossible, since 𝒋𝒋 − 𝒊𝒊 is a positive integer 
strictly less than 𝒏𝒏.  Therefore the first possibility must hold, that exactly one of the 
numbers in our collection is divisible by 𝒏𝒏. 
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Like 12. How many ordered pairs of integers (𝑎𝑎, 𝑏𝑏) are needed to guarantee that there are two 
ordered pairs (𝑎𝑎1, 𝑏𝑏1) and (𝑎𝑎2, 𝑏𝑏2) such that 𝑎𝑎1 𝐦𝐦𝐦𝐦𝐦𝐦 3 =  𝑎𝑎2 𝐦𝐦𝐦𝐦𝐦𝐦 3 and 𝑏𝑏1𝐦𝐦𝐦𝐦𝐦𝐦 3 =
 𝑏𝑏2 𝐦𝐦𝐦𝐦𝐦𝐦 3? 
Solution: 
Working modulo 𝟑𝟑 there are 𝟗𝟗 pairs: (0, 0), (0, 1) . . ., (2, 2). Thus we could have 𝟗𝟗 ordered 
pairs of integers (𝒂𝒂,𝒃𝒃) such that no two of them were equal when reduced modulo 𝟑𝟑. The 
pigeonhole principle, however, guarantees that if we have 𝟏𝟏𝟏𝟏 such pairs, then at least two 
of them will have the same coordinates, modulo 𝟑𝟑. 

 
 
 


