

DEFINITION 1 An algorithm is called *recursive* if it solves a problem by reducing it to an instance of the same problem with smaller input.

EXAMPLE 1 Give a recursive algorithm for computing $n!$, where n is a nonnegative integer.

Solution:

```
unsigned int factorial(unsigned int n) {return n>0?n*factorial(n-1):1;}
```

EXAMPLE 2 Give a recursive algorithm for computing a^n where n is a nonnegative integer.

Solution:

```
double power(double b,unsigned int n) {return n>0?b*power(b,n-1):1;}
```

EXAMPLE 4 Give a recursive algorithm for computing the greatest common divisor of two non-negative integers a and b with $a < b$.

Solution:

```
unsigned int gcd(unsigned int a, unsigned int b){return a==0?b:gcd(b%a,a);}
int main()
{ for (;;) {
    cout << endl;
    cout << "Enter nonnegative integer argument a. ";
    int a;
    cin >> a;
    cout << "Enter nonnegative integer argument b. ";
    int b;
    cin >> b;
    if (a<0||b<0) break;
    if (a>=b) {
        cout << endl << a << " must be less than " << b << ".";
        continue;
    }
    cout << "gcd(" << a << "," << b << ")=" << gcd(a,b);
}
return 0;
}
```

EXAMPLE 7 Prove that Algorithm 2, which computes powers of real numbers, is correct.

Solution: We use mathematical induction on the exponent n .

BASIS STEP: If $n = 0$, the first step of the algorithm tells us that $\text{power}(b, 0) = 1$. This is correct because $b^0 = 1$ for every nonzero real number b . This completes the basis step.

INDUCTIVE STEP: The inductive hypothesis is the statement that $\text{power}(b, k) = b^k$ for all $b \neq 0$ for the nonnegative integer k . That is, the inductive hypothesis is the statement that the algorithm correctly computes b^k . To complete the inductive step, we show that if the inductive hypothesis is true, then the algorithm correctly computes b^{k+1} . Because $k + 1$ is a positive integer, when the algorithm computes b^{k+1} , the algorithm sets $\text{power}(b, k + 1) = b \cdot \text{power}(b, k) = b \cdot b^k = b^{k+1}$. This completes the inductive step.