Discrete Structures Lecture 30
CMSC 2123 5.3 Recursive Definitions and Structural Induction

Introduction

recursion A definition that defines an object in terms of itself.

Recursively Defined Functions

Two steps are employed to define a function with the set of nonnegative integers as its domain:
1. BASIS STEP: Specify the value of the function at zero.
2. RECURSIVE STEP: Give a rule for finding its value at an integer from its values at smaller
integers.

EXAMPLE 1 Suppose that f'is defined recursively by
f(0) =3.
f(n+1)=2f(n)+3.
Find (1), f(2), f(3) and f(4).

Solution:
f) = 2f(0) +3 9
f(2) = 2f(1) +3 21
f(3) = 2f(2)+3 45
f4) = 2f(3)+3 93

EXAMPLE 2 Give an inductive definition of the factorial function F(n) = n!.
Solution:
1. BASISSTEP:F(0) =1
2. RECURSIVESTEP:F(n+1)=(n+1)-F(n)

EXAMPLE 3 Give an inductive definition of the function a™, where a is a nonzero real
number an n is a nonnegative integer.
Solution:
1. BASISSTEP: f(0)=1,a° =1
2. RECURSIVESTEP: f(n+ 1) =a- f(n),a"*' =a-a"

EXAMPLE 4 Give a recursive definition of

n

D, o

k=0
Solution:

1. 22=g a, = a,
2. Yiioar = (Bk=o @) + Anyq
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DEFINITION 1 The Fibonacci numbers, fy, f1, f2,, are defined by the equations f, = 0 and
fi=1and
fa=Tfa1t fao
forn=2,3,4,-
EXAMPLE 5 Find the Fibonacci numbers f,, f3, fa, f5, and fg.
Solution:
L=hthh= 1+0=
fi=fhh+th= 1+1=
fai=ftf= 2+1=
fs=fitf= 3+2=
fe=fstfu= 5+3=
5.

Determine whether each of these proposed definitions is a valid recursive definition of a

function f from the set of nonnegative integers to the set of integers. If f is well defined, find
a formula for f (n) when n is a nonnegative integer and prove that your formula is valid.
a) f(0)=0,f(n)=2f(n—2)forn=>1

Solution:
n 0 1
f() 0 2f1-2)=2f(-1)

Function f is defined only from the set of nonnegative integers implying that the
argument for f must be a nonnegative integer. Whenn =1, f(n) = 2f(-1).
f(—1) is not defined since —1 is not a nonnegative integer.

b) f(O)=1,f(n)=f(n—1)—1forn>1

Solution:
n 0 1 2 3
f(m) 1 fn—-1)-1 fn—-1)-1 fB-1)-1
=f1-1)-1 =f2-1)-1 =f3-1)—-1
=f(0)-1 =f(1)-1 =f(2)-1
=1-1 =0-1 =-1-1
=0 =-1 =-2

Conjecture: f(n) =1—n
BasisStep: f(0)=1=1-n=1-0=1

Inductive Step:

Induction Hypothesis: f(k) =1 —k
Prove: f(k+1)=1—-(k+1)

Expression Justification
f(k+1) Original left hand side
=f(k)—1 Application of original definition
f[M=fn-1)—-1
=1-k-1 Application of the induction
hypothesis
f(k)=1—-k

=1—(k+1) -k-1=—-(k+1)
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c) f(0)=2,f(1)=3,fn)=f(n—1)—1forn=>2
Solution:
n 0 1 2 3
fm) 2 f1)=3 f(2) f@3)
=f2-1)—-1 =f3-1)—-1
=f(1) -1 = f(2) -1
=3-1 =2-1
=2 =1

Conjecture: f(0) =2forn=0;f(n) =4 —nforn> 0

Basis Step:
Forn=0:f(0) =2

Forn>0:f(1)=4—-1=3=f(1)

Inductive Step:
Induction Hypothesis: f(k) =4 — k
Prove: f(k+1)=4—-(k+1)

Expression Justification

f(k+1) Original left hand side

=f(k)—1 Application of original definition

f[M=fn-1)—-1
=4-k—-1 Application of the induction
hypothesis
f(k)=4—-k
=4—-(k+1) —-k—1=—(k+1)
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d f(0)=1f1)=2f(n)=2f(n—2)forn=>2
Solution:
n 0|1 2 3 4 5 6
fm) | 12| 2f(2-2) | 2f3-2) | 2f(4—-2) | 2f(5—-2) | 2f(6—2)
= 2f(0) =2f(1) =2f(2) | =2f3) | =2f4)
=2x1 =2xX2 =2xX2 =2x4 =2x4
=2 =4 =4 = =

Conjecture: f(n) = 2 [®@+1/2l
Basis Step:

£(0) =1 =2m+D/2] - 2 10+1)/2] — 2 1(V/21 = 20 = 1

F(1) =2 =21®D/2] = 210+D/2] — 21@)/2] = 21 = 2
Inductive Step:

Induction Hypothesis: f(k) = 2 [(k+1/2l

Prove: f(k + 1) = 2 L((k+D+1)/2]

Expression Justification
f(k+1) Original left hand side
=2f(k+1-2) Application of original definition
f(m) =2f(n—2)
=2f(k—1) Subtraction
= 2 x 2l(k-1+1)/2] Application of the induction
hypothesis

f(k) = 2 k+1)/2

=2 x 2lk/2] Subtraction
= 21k/2]+1 Properties of exponents:
2 X 2% = 2x+1
— 2lk/2]+[2/2] 2
1 = E
= 21(k+2)/2] k L2 k+2
2 2 2
= 2l(k+D+1)/2| k+2 ((k+1)+1)
2 2
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e) f(0O)=1,f(n)=3f(n—1)ifnisoddandn >1

and f(n) =9f(n—2)ifnisevenandn > 2

Solution:
n 0 1 2 3 4 5
fm) | 1] 3f1-1) 3f3-1) 3f(5-1)
= 3f(0) =3f(2) =3f4)
=3x1 =3x%x9 =3x81
=3 =27 = 243
f(m) 9f(2-2) 9f(4—-2)
= 9f(0) =9f(2)
=9x1 =9x%x9
=9 =81
Conjecture: f(n) =3™"
Basis Step:
case:

n=0: f(0)=1=3%°=1

n=1: f(1)=3f1-1)=3f(0)=3x1=3=31=3
n=2: f2)=9f2-2)=9f(0)=9x1=9=32=9

Inductive Step:
Assume f(k) = 3k
Prove: f(k + 1) = 3k*1
case:
For odd n:

Expression

Justification

f(n) =3f(n-1)

From the exercise statement when n
isoddandn > 1

=3 x 31

Apply the induction hypothesis

=3n

Properties of exponents:
3 x 3% = 3x+1

Forevenn > 1:

Expression

Justification

fm)=9f(n-2)

From the exercise statement when n
isoddandn>1

=9 x 3n2

Apply the induction hypothesis

=3%x3"2=3"

Properties of exponents:
3 x 3% = 3x+1




