

### Mathematical Induction

- **Mathematical induction** can be used to prove statements that assert  $P(n)$  is true for all positive integers  $n$ , where  $P(n)$  is a propositional function. A proof by mathematical induction has two parts
  - a **basis step**, where we show  $P(1)$  is true and
  - an **inductive step**, where we show that for all positive integers  $k$ , if  $P(k)$  is true, then  $P(k + 1)$  is true.

#### Mathematical Induction

**PRINCIPLE OF MATHEMATICAL INDUCTION.** To prove  $P(n)$  is true for all positive integers  $n$ , where  $P(n)$  is a propositional function, we complete two steps.

1. *BASIS STEP.* We verify that  $P(1)$  is true.
2. *INDUCTIVE STEP.* We show that the conditional statement  $P(k) \rightarrow P(k + 1)$  is true for all positive integers  $k$ .

#### Strong Induction

**STRONG INDUCTION.** To prove  $P(n)$  is true for all positive integers  $n$ , where  $P(n)$  is a propositional function, we complete two steps.

1. *BASIS STEP.* We verify that  $P(1)$  is true.
2. *INDUCTIVE STEP.* We show that the conditional statement  $[P(1) \wedge P(2) \wedge \dots \wedge P(k)] \rightarrow P(k + 1)$  is true for all positive integers  $k$ .

#### EXAMPLE 2

Show that if  $n$  is an integer greater than 1, then  $n$  can be written as the product of primes.

*Solution:* Let  $P(n)$  be the proposition that  $n$  can be written as the product of primes.

BASIS STEP:  $P(2)$  is true, because 2 can be written as the product of one prime, itself. [Note that  $P(2)$  is the first case we need to establish.]

INDUCTIVE STEP: The inductive hypothesis is the assumption that  $P(j)$  is true for all positive integers  $j \leq k$ , that is, the assumption that  $j$  can be written as the product of primes whenever  $j$  is a positive integer at least 2 and not exceeding  $k$ . To complete the inductive step, it must be shown that  $P(k + 1)$  is true under this assumption, that is, that  $k + 1$  is the product of primes.

There are two cases to consider, namely, when  $k + 1$  is prime and when  $k + 1$  is composite. If  $k + 1$  is prime, we immediately see that  $P(k + 1)$  is true.

Otherwise,  $k + 1$  is composite and can be written as the product of two positive integers  $a$  and  $b$  with  $2 \leq a \leq b \leq k + 1$ . By the inductive hypothesis, both  $a$  and  $b$  can be written as the product of primes. Thus, if  $k + 1$  is composite, it can be written as the product of primes, namely, those primes in the factorization of  $a$  and those in the factorization of  $b$ .

**EXAMPLE 4** Prove that every amount of postage of 12 cents or more can be formed using just 4-cent and 5-cent stamps.

*Solution:* We will prove this result using the principle of mathematical induction. Then we will present a proof using strong induction.

Let  $P(n)$  be the statement that postage of  $n$  cents can be formed using 4-cent and 5-cent stamps.

We begin by using the principle of mathematical induction.

**BASIS STEP:** Postage of 12 cents can be formed using three 4-cent stamps.

**INDUCTIVE STEP:** The inductive hypothesis is the statement that  $P(k)$  is true. That is, under this hypothesis, postage of  $k$  cents can be formed using 4-cent and 5-cent stamps. To complete the inductive step, we need to show that when we assume  $P(k)$  is true, then  $P(k + 1)$  is also true where  $k \geq 12$ . That is, we need to show that if we can form postage of  $k$  cents, then we can form postage of  $k + 1$  cents.

To see this, suppose that at least one 4-cent stamp was used to form postage of  $k$  cents. Then we can replace this stamp with a 5-cent stamp to form postage of  $k + 1$  cents.

But if no 4-cent stamps were used, we can form postage of  $k$  cents using only 5-cent stamps. So we can replace three 5-cent stamps with four 4-cent stamps to form postage of  $k + 1$  cents. This completes the inductive step.

**STRONG INDUCTION:**

**BASIS STEP:** We show that  $P(12), P(13), P(14)$ , and  $P(15)$  are true. We can form postage of 12, 13, 14, and 15 cents using three 4-cent stamps, two 4-cent stamps and one 5-cent stamp, one 4-cent stamp and two 5-cent stamps, and three 5-cent stamps, respectively. This shows that  $P(12), P(13), P(14)$ , and  $P(15)$  are true.

**INDUCTIVE STEP:** The inductive hypothesis is the statement that  $P(j)$  is true for  $12 \leq j \leq k$ , where  $k$  is an integer with  $k \geq 15$ . That is, we assume that we can form postage of  $j$  cents, where  $12 \leq j \leq k$ .

To complete the inductive step we need to show that under this assumption,  $P(k + 1)$  is true, that is, we can form postage of  $k + 1$  cents. Using the inductive hypothesis, we can assume that  $P(k - 3)$  is true because  $k - 3 \geq 12$ , that is, we can form postage of  $k - 3$  cents using just 4-cent and 5-cent stamps. To form postage of  $k + 1$  cents, we need only add another 4-cent stamp to the stamps we used to form postage of  $k - 3$  cents. That is, we have shown that if the inductive hypothesis is true, then  $P(k + 1)$  is also true. This completes the inductive step.