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First Introduction 
Our goal is to solve equations having the form 𝑎𝑎𝑎𝑎 ≡ 𝑏𝑏 (𝐦𝐦𝐦𝐦𝐦𝐦 𝑚𝑚).  However, first we must discuss 
the last part of the previous section titled gcds as Linear Combinations 
 
 

THEOREM 6 BÉZOUT’S THEOREM If 𝑎𝑎 and 𝑏𝑏 are positive integers, then there exist integers 
𝑠𝑠 and 𝑡𝑡 such that 𝑔𝑔𝑔𝑔𝑔𝑔(𝑎𝑎, 𝑏𝑏) = 𝑠𝑠𝑠𝑠 + 𝑡𝑡𝑡𝑡. 

 
DEFINITION 6 If 𝑎𝑎 and 𝑏𝑏 are positive integers, then 𝑠𝑠 and 𝑡𝑡 such that 𝑔𝑔𝑔𝑔𝑔𝑔(𝑎𝑎, 𝑏𝑏) = 𝑠𝑠𝑠𝑠 + 𝑡𝑡𝑡𝑡 

are called 𝐵𝐵é𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 of 𝑎𝑎 and 𝑏𝑏 (after Étienne Bézout, a French 
mathematician of the eighteenth century).  Also, the equation 𝑔𝑔𝑔𝑔𝑔𝑔(𝑎𝑎, 𝑏𝑏) =
𝑠𝑠𝑠𝑠 + 𝑡𝑡𝑡𝑡 is called 𝐵𝐵é𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧’𝑠𝑠 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖. 

 
EXAMPLE 17 Express 𝑔𝑔𝑔𝑔𝑔𝑔(252,198) = 18 as a linear combination of 252 and 198. 
 Solution: To show that 𝑔𝑔𝑔𝑔𝑔𝑔(252 , 198) = 18, the Euclidean algorithm uses 

these divisions. 
 

a  b  q  r  r  a  q  b 
252 = 198 . 1 + 54  54 = 252 - 1 . 198 
198 = 54 . 3 + 36  36 = 198 - 3 . 54 
54 = 36 . 1 + 18  18 = 54 - 1 . 36 

 
Starting with the last division, substitute the equation for the remainder in the 
previous division into the current computation. 

Step  r  a  q  b 
3 18 = 4 ∙ (252 − 198)− 198 

18 = 4 ∙ 252− 5 ∙ 198 54 = 252 - 1 . 198 
2 18 = 54 − (198 − 3 ∙ 54) 

18 = 4 ∙ 𝟓𝟓𝟓𝟓 − 198 36 = 198 - 3 . 54 
1 18 = 54 − 𝟑𝟑𝟑𝟑 18 = 54 - 1 . 36 

 
Recall the 𝐵𝐵é𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧’𝑠𝑠 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑔𝑔𝑔𝑔𝑔𝑔(𝑎𝑎, 𝑏𝑏) = 𝑠𝑠𝑠𝑠 + 𝑡𝑡𝑡𝑡.  In this example, we have 
𝑔𝑔𝑔𝑔𝑔𝑔(252,198) = 18 and, hence, 𝑠𝑠 = 4 and 𝑡𝑡 = −5 making  

18 = 4 ∙ 252 − 5 ∙ 198 
completing the solution 
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Second Introduction 
Solving linear congruences, which have the form 𝑎𝑎𝑎𝑎 ≡ 𝑏𝑏 (𝐦𝐦𝐦𝐦𝐦𝐦 𝑚𝑚), is an essential task in the 
study of number theory and its applications.  To solve linear congruences, we employ inverses 
modulo 𝑚𝑚. We explain how to work backwards through steps of the Euclidean algorithm to find 
inverses modulo 𝑚𝑚.  Once we have found an inverse of 𝑎𝑎 modulo 𝑚𝑚, we solve the congruence 
𝑎𝑎𝑎𝑎 ≡ 𝑏𝑏 (𝐦𝐦𝐦𝐦𝐦𝐦 𝑚𝑚) by multiplying both sides of the congruence by this inverse. 
 
 
Linear Congruences 
A congruence of the form 
 

𝑎𝑎𝑎𝑎 ≡ 𝑏𝑏 (𝐦𝐦𝐦𝐦𝐦𝐦 𝑚𝑚), 
 
Where 𝑚𝑚 is a positive integer, 𝑎𝑎 and 𝑏𝑏 are integers, and 𝑥𝑥 is a variable, is called a linear 
congruence. 
 
How can we solve the linear congruence 𝑎𝑎𝑎𝑎 ≡ 𝑏𝑏 (𝐦𝐦𝐦𝐦𝐦𝐦 𝑚𝑚), that is, how can we find all integers 𝑥𝑥 
that satisfy this congruence?   One method that we will describe uses an integer 𝑎𝑎  such that 𝑎𝑎 𝑎𝑎 ≡
1 (𝐦𝐦𝐦𝐦𝐦𝐦 𝑚𝑚), if such an integer exists.  Such an integer 𝑎𝑎 is said to be an inverse of 𝑎𝑎 modulo 𝑚𝑚.  
Theorem 1 guarantees that an inverse of 𝑎𝑎 modulo 𝑚𝑚 exists whenever 𝑎𝑎 and 𝑚𝑚 are relatively 
prime. 
 

THEOREM 1 If 𝑎𝑎 and 𝑚𝑚 are relatively prime integers and 𝑚𝑚 > 1, then an inverse of 𝑎𝑎 
modulo 𝑚𝑚 exists.  Furthermore, this inverse is unique modulo 𝑚𝑚.  (That is, 
there is a unique positive integer 𝑎𝑎 less than 𝑚𝑚 that is an inverse of 𝑎𝑎 modulo 
𝑚𝑚 and every other inverse of 𝑎𝑎 modulo 𝑚𝑚 is congruent to 𝑎𝑎 modulo 𝑚𝑚.) 

 
EXAMPLE 1 Find an inverse of 3 modulo 7 by first finding Bézout coefficients of 3 and 7.  

(Note that we have already shown that 5 is an inverse of 3 modulo 7 by 
inspection.) 

 Solution: Because 𝑔𝑔𝑔𝑔𝑔𝑔(3,7) = 1, Theorem 1 tells us that an inverse of 3 
modulo 7 exists.  The Euclidean algorithm ends quickly when used to find the 
greatest common divisor of 3 and 7. 
 

7 = 2 ∙ 3 + 1 
 
From this equation we see that  
 

−2 ∙ 3 + 1 ∙ 7 = 1 
 
Recall that 𝑔𝑔𝑔𝑔𝑔𝑔(𝑎𝑎, 𝑏𝑏) = 𝑠𝑠𝑠𝑠 + 𝑡𝑡𝑡𝑡 defines 𝑠𝑠 and 𝑡𝑡 as Bézout coefficients. This 
shows that −2 and 1 are Bézout coefficients of 3 and 7.  We see that −2 is an 
inverse of 3 modulo 7.  Note that every integer congruent to −2 modulo 7 is 
also an inverse of 3, such as 5, −9, 12, and so on. 
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EXAMPLE 2 Find an inverse of 101 modulo 4620. 
 Solution: For completeness, we present all steps used to compute an inverse of 

101 modulo 4620.  (Only the last step goes beyond methods developed in 
section 4.3 and illustrated in Example 17 in that section.)  First, we use the 
Euclidean algorithm to show that 𝑔𝑔𝑔𝑔𝑔𝑔(101,4620) = 1.  Then we will reverse the 
steps to find Bézout coefficients 𝑎𝑎 and 𝑏𝑏 such that 101𝑎𝑎 + 4620𝑏𝑏 = 1.  It will 
then follow that 𝑎𝑎 is an inverse of 101 modulo 4620.  The steps used by the 
Euclidean algorithm to find 𝑔𝑔𝑔𝑔𝑔𝑔(101,4620) are 
 

a  b  q  r  r  a  q  b 
4620 = 101 . 45 + 75  75 = 4620 - 45 . 101 
101 = 75 . 1 + 26  26 = 101 - 1 . 75 
75 = 26 . 2 + 23  23 = 75 - 2 . 26 
26 = 23 . 1 + 3  3 = 26 - 1 . 23 
23 = 3 . 7 + 2  2 = 23 - 7 . 3 
3 = 2 . 1 + 1  1 = 3 - 1 . 2 

 
Because the last nonzero remainder is 1, we know that 𝑔𝑔𝑔𝑔𝑔𝑔(101,4620) = 1.  We 
can now find the Bézout coefficients for 101 and 4620 by working backwards 
through these steps, expressing 𝑔𝑔𝑔𝑔𝑔𝑔(101,4620) = 1 in terms of each successive 
pair of remainders.  In each step we eliminate the remainder by expressing it as 
a linear combination of the divisor and the dividend.  We obtain 

Step  r  a  q  b 
6 1 = 26 ∙ 101 − 35 ∙ (4620 − 45 ∙

101)  
1 = 1601 ∙ 101− 35 ∙ 4620  75 = 4620 - 45 . 101 

5 1 = 26 ∙ (101 − 75) − 9 ∙ 75  
1 = 26 ∙ 101 − 35 ∙ 𝟕𝟕𝟕𝟕  26 = 101 - 1 . 75 

4 1 = 8 ∙ 26 − 9 ∙ (75 − 2 ∙ 26)  
1 = 26 ∙ 𝟐𝟐𝟐𝟐 − 9 ∙ 75  23 = 75 - 2 . 26 

3 1 = 8 ∙ (26 − 23) − 23  
1 = 8 ∙ 26 − 9 ∙ 𝟐𝟐𝟐𝟐  3 = 26 - 1 . 23 

2 1 = 3 − 1 ∙ (23 − 7 ∙ 3)  
1 = 8 ∙ 𝟑𝟑 − 1 ∙ 23  2 = 23 - 7 . 3 

1 1 = 3 − 1 ∙ 𝟐𝟐  1 = 3 - 1 . 2 
 

𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 ∙ 𝟏𝟏𝟏𝟏𝟏𝟏 − 𝟑𝟑𝟑𝟑 ∙ 𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒 = 𝟏𝟏 
 
That 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 ∙ 𝟏𝟏𝟏𝟏𝟏𝟏 − 𝟑𝟑𝟑𝟑 ∙ 𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒 = 𝟏𝟏 tells us that 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 and −35 are Bézout 
coefficients of 101 and 4620, and 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 is an inverse of 101 modulo 4620. 
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EXAMPLE 2.1 Find an inverse of 4 modulo 9. 
 Solution:  First, we use the Euclidean algorithm to show that 𝑔𝑔𝑔𝑔𝑔𝑔(4,9) = 1.  

Then we will reverse the steps to find Bézout coefficients 𝑠𝑠 and 𝑡𝑡 such that 𝑠𝑠4 +
𝑡𝑡9 = 1.  It will then follow that 𝑠𝑠 is an inverse of 4 modulo 9.  The steps used 
by the Euclidean algorithm to find 𝑔𝑔𝑔𝑔𝑔𝑔(4,9) are 
 

Dividend  Divisor  Quotient  Remainder 
9 = 4 . 2 + 1 
4 = 1 . 4 + 0 

 
1 = 𝟏𝟏 ∙ 9 − 𝟐𝟐 ∙ 4 

 
That 1 = 𝟏𝟏 ∙ 9 − 𝟐𝟐 ∙ 4  tells us that 𝟏𝟏 and −𝟐𝟐 are Bézout coefficients of 9 and 4, 
and −𝟐𝟐 is an inverse of 4 modulo 9. Inverses of 4 modulo 9 are −𝟐𝟐 + 𝒌𝒌 ∙ 𝟗𝟗 =
⋯ ,−𝟐𝟐𝟐𝟐,−𝟏𝟏𝟏𝟏,−𝟐𝟐,𝟕𝟕,𝟏𝟏𝟏𝟏,𝟐𝟐𝟐𝟐,⋯ 

 
EXAMPLE 2.2 Find an inverse of 19 modulo 141. 
 Solution:  First, we use the Euclidean algorithm to show that 𝑔𝑔𝑔𝑔𝑔𝑔(19,141) =

1.  Then we will reverse the steps to find Bézout coefficients 𝑠𝑠 and 𝑡𝑡 such 
that 𝑠𝑠19 + 𝑡𝑡141 = 1.  It will then follow that 𝑠𝑠 is an inverse of 19 modulo 141.  
The steps used by the Euclidean algorithm to find 𝑔𝑔𝑔𝑔𝑔𝑔(19,141) are 
 

a  b  q  r  r  a  q  b 
141 = 19 . 7 + 8  8 = 141 - 19 . 7 
19 = 8 . 2 + 3  3 = 19 - 8 . 2 
8 = 3 . 2 + 2  2 = 8 - 3 . 2 
3 = 2 . 1 + 1  1 = 3 - 2 . 1 

 
Step  r  a  q  b 

4 1 = 3 ∙ 19 − 7 ∙ (141 − 7 ∙ 19)  
1 = 52 ∙ 19 − 7 ∙ 141  8 = 141 - 19 . 7 

3 1 = 3 ∙ (19 − 2 ∙ 8) − 8  
1 = 3 ∙ 19 − 7 ∙ 𝟖𝟖  3 = 19 - 8 . 2 

2 1 = 3 − (8 − 3 ∙ 2)  
1 = 3 ∙ 𝟑𝟑 − 8  2 = 8 - 3 . 2 

1 1 = 3 − 𝟐𝟐  1 = 3 - 2 . 1 
 

1 = 𝟓𝟓𝟓𝟓 ∙ 19 − 7 ∙ 141 
 
That 1 = 𝟓𝟓𝟓𝟓 ∙ 19 − 𝟕𝟕 ∙ 141  tells us that 𝟓𝟓𝟓𝟓 and −𝟕𝟕 are Bézout coefficients of 
19 and 141, and 𝟓𝟓𝟓𝟓 is an inverse of 19 modulo 141. Inverses of 19 
modulo 141 are 𝟓𝟓𝟓𝟓 + 𝒌𝒌 ∙ 𝟏𝟏𝟏𝟏𝟏𝟏 = ⋯ ,−𝟖𝟖𝟖𝟖,𝟓𝟓𝟓𝟓,𝟏𝟏𝟏𝟏𝟏𝟏,⋯ 
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EXAMPLE 2.3 Find an inverse of 55 modulo 89. 
 Solution:  First, we use the Euclidean algorithm to show that 𝑔𝑔𝑔𝑔𝑔𝑔(55,89) = 1.  

Then we will reverse the steps to find Bézout coefficients 𝑠𝑠 and 𝑡𝑡 such 
that 𝑠𝑠55 + 𝑡𝑡89 = 1.  It will then follow that 𝑠𝑠 is an inverse of 55 modulo 89.  
The steps used by the Euclidean algorithm to find 𝑔𝑔𝑔𝑔𝑔𝑔(55,89) are 

a  b  q  r  r  a  q  b 
89 = 55 . 1 + 34  34 = 89 - 1 . 55 
55 = 34 . 1 + 21  21 = 55 - 1 . 34 
34 = 21 . 1 + 13  13 = 34 - 1 . 21 
21 = 13 . 1 + 8  8 = 21 - 1 . 13 
13 = 8 . 1 + 5  5 = 13 - 1 . 8 
8 = 5 . 1 + 3  3 = 8 - 1 . 5 
5 = 3 . 1 + 2  2 = 5 - 1 . 3 
3 = 2 . 1 + 1  1 = 3 - 1 . 2 

 
Step  r  a  q  b 

8 
1 = 13 ∙ 55 − 21 ∙ (89 − 55)  
1 = 34 ∙ 55 − 21 ∙ 89  34 = 89 - 1 . 55 

7 
1 = 13 ∙ (55 − 34) − 8 ∙ 34  
1 = 13 ∙ 55 − 21 ∙ 𝟑𝟑𝟑𝟑  21 = 55 - 1 . 34 

6 
1 = 5 ∙ 21 − 8 ∙ (34 − 21)  
1 = 13 ∙ 𝟐𝟐𝟐𝟐 − 8 ∙ 34  13 = 34 - 1 . 21 

5 
1 = 5 ∙ (21 − 13) − 3 ∙ 13  
1 = 5 ∙ 21 − 8 ∙ 𝟏𝟏𝟏𝟏  8 = 21 - 1 . 13 

4 
1 = 2 ∙ 8 − 3 ∙ (13 − 8)  
1 = 5 ∙ 𝟖𝟖 − 3 ∙ 13  5 = 13 - 1 . 8 

3 
1 = 2 ∙ (8 − 5) − 5  
1 = 2 ∙ 8 − 3 ∙ 𝟓𝟓  3 = 8 - 1 . 5 

2 
1 = 3 − (5 − 3)  
1 = 2 ∙ 𝟑𝟑 − 5  2 = 5 - 1 . 3 

1 1 = 3 − 𝟐𝟐  1 = 3 - 1 . 2 
 

1 = 𝟑𝟑𝟑𝟑 ∙ 55 − 21 ∙ 89 
 
That 1 = 𝟑𝟑𝟑𝟑 ∙ 55 − 𝟐𝟐𝟐𝟐 ∙ 89  tells us that 𝟑𝟑𝟑𝟑 and −𝟐𝟐𝟐𝟐 are Bézout coefficients 
of 55 and 89, and 𝟑𝟑𝟑𝟑 is an inverse of 55 modulo 89. Inverses of 55 modulo 89 
are 𝟑𝟑𝟑𝟑 + 𝒌𝒌 ∙ 𝟖𝟖𝟖𝟖 = ⋯ ,−𝟓𝟓𝟓𝟓,𝟑𝟑𝟑𝟑,𝟏𝟏𝟏𝟏𝟏𝟏,⋯ 

 
 
Once we have an inverse 𝑎𝑎 of 𝑎𝑎 modulo 𝑚𝑚, we can solve the congruence 𝑎𝑎𝑎𝑎 ≡ 𝑏𝑏(𝐦𝐦𝐦𝐦𝐦𝐦 𝑚𝑚) by 
multiplying both sides of the linear congruence by 𝑎𝑎, as Example 3 illustrates. 
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EXAMPLE 3 What are the solutions of the linear congruence 3𝑥𝑥 ≡ 4 (𝐦𝐦𝐦𝐦𝐦𝐦 7)? 
 Solution: By Example 1 we know that −2 is an inverse of 3 modulo 7.  

Recall 𝑔𝑔𝑔𝑔𝑔𝑔(3,7) = −2 ∙ 3 + 1 ∙ 7 = 1 from example 1.  Additional inverse 
values include 5, 12, …  Let us select the first positive inverse value, 5.  In the 
congruence 

𝑎𝑎𝑎𝑎 ≡ 𝑏𝑏(𝐦𝐦𝐦𝐦𝐦𝐦 𝑚𝑚) 
 
If 𝑏𝑏 is an inverse of 𝑏𝑏 modulo 𝑚𝑚, then 
 

𝑥𝑥 = �𝑏𝑏 ∙ 𝑏𝑏 − 𝑚𝑚� 𝐦𝐦𝐦𝐦𝐦𝐦 𝑚𝑚 
𝑥𝑥 = (5 ∙ 4 − 7) 𝐦𝐦𝐦𝐦𝐦𝐦 7 = 6 

 
Applying our finding, we have 
 

3𝑥𝑥 ≡ 3 ∙ 6 = 18 ≡ 4( 𝐦𝐦𝐦𝐦𝐦𝐦 7) 
 
which shows that all such 𝑥𝑥 satisfy the congruence.  We conclude that the 
solutions to the congruence are integers 𝑥𝑥 such that 𝑥𝑥 ≡ 6 (𝐦𝐦𝐦𝐦𝐦𝐦 7), namely, 
6, 13, 20, … , and −1,−8,−15, … . 
 
Test: Does 𝑥𝑥 = −8 satisfy the congruence, 3𝑥𝑥 ≡ 4 (𝐦𝐦𝐦𝐦𝐦𝐦 7)? Is −24 ≡
4 (𝐦𝐦𝐦𝐦𝐦𝐦 7)?  Recall the definition of congruence.  We say that 𝑎𝑎 ≡ 𝑏𝑏(mod 𝑚𝑚) 
if 𝑚𝑚|(𝑎𝑎 − 𝑏𝑏).  Does 7|(−24 − 4)? Answer, yes. 

 
EXAMPLE 3.1 Let us try another example. What are the solutions of the linear 

congruence 19𝑥𝑥 ≡ 4 (𝐦𝐦𝐦𝐦𝐦𝐦 141)? 
 Solution:  From Example 2.2, we know that 52 is an inverse of 19 modulo 141 

 
𝑎𝑎𝑎𝑎 ≡ 𝑏𝑏(𝐦𝐦𝐦𝐦𝐦𝐦 𝑚𝑚) 

 
If 𝑏𝑏 is an inverse of 𝑏𝑏 modulo 𝑚𝑚, then 
 

𝑥𝑥 = �𝑏𝑏 ∙ 𝑏𝑏 − 𝑚𝑚� 𝐦𝐦𝐦𝐦𝐦𝐦 𝑚𝑚 
𝑥𝑥 = (52 ∙ 4 − 141) 𝐦𝐦𝐦𝐦𝐦𝐦 141 = 67 

 
Applying our finding, we have 
 

19𝑥𝑥 ≡ 19 ∙ 67 = 1273 ≡ 4( 𝐦𝐦𝐦𝐦𝐦𝐦 141) 
 
which shows that all such 𝑥𝑥 satisfy the congruence.  We conclude that the 
solutions to the congruence are integers 𝑥𝑥 such that 𝑥𝑥 ≡ 67 (𝐦𝐦𝐦𝐦𝐦𝐦 141), 
namely, 67, 208, 349, … , and −74,−215,−356, … . 
 
Test: Does 𝑥𝑥 = −74 satisfy the congruence, 19𝑥𝑥 ≡ 4 (𝐦𝐦𝐦𝐦𝐦𝐦 141)? Is −1406 ≡
4 (𝐦𝐦𝐦𝐦𝐦𝐦 141)?  Recall the definition of congruence.  We say that 𝑎𝑎 ≡
𝑏𝑏(mod 𝑚𝑚) if 𝑚𝑚|(𝑎𝑎 − 𝑏𝑏).  Does 141|(−1406− 4)? Answer, yes. −1406−4

141
= 10 
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The Chinese Remainder Theorem 
 

EXAMPLE 4 In the first century, the Chinese mathematician Sun-Tsu asked: 
 

There are certain things whose number is unknown.  When divided by 3, 
the remainder is 2; when divided by 5, the remainder is 3; and when 
divided by 7, the remainder is 2.  What will be the number of things? 

 
This puzzle can be translated into the following question: What are the 
solutions of the systems of congruences 
 
 𝑥𝑥 ≡ 2 (𝐦𝐦𝐦𝐦𝐦𝐦 3), 
 𝑥𝑥 ≡ 3 (𝐦𝐦𝐦𝐦𝐦𝐦 5), 
 𝑥𝑥 ≡ 2 (𝐦𝐦𝐦𝐦𝐦𝐦 7)? 
 
We will solve this system, and with it Sun-Tsu’s puzzle, later in this section. 

 
THEOREM 2 THE CHINESE REMAINDER THEOREM  Let 𝑚𝑚_1,𝑚𝑚_2,⋯ ,𝑚𝑚_𝑛𝑛 be pairwise 

relatively prime positive integers greater than one and 𝑎𝑎_1,𝑎𝑎_2,⋯ ,𝑎𝑎_𝑛𝑛 
arbitrary integers.  Then the system 
 
 𝑥𝑥 ≡ 𝑎𝑎_1  (𝐦𝐦𝐦𝐦𝐦𝐦 𝑚𝑚_1 ),  
 𝑥𝑥 ≡ 𝑎𝑎_2  (𝐦𝐦𝐦𝐦𝐦𝐦 𝑚𝑚_2 ), 
   ⋮ 
 𝑥𝑥 ≡ 𝑎𝑎_𝑛𝑛  (𝐦𝐦𝐦𝐦𝐦𝐦 𝑚𝑚_𝑛𝑛 ) 
 
has a unique solution modulo 𝑚𝑚 = 𝑚𝑚_1 𝑚𝑚_2⋯𝑚𝑚_𝑛𝑛.  (That is, there is a 
solution 𝑥𝑥 with 0 ≤ 𝑥𝑥 < 𝑚𝑚, and all other solutions are congruent modulo 𝑚𝑚 
to this solution.) 

 Proof: To establish this theorem, we need to show that a solution exists and 
that it is unique modulo 𝑚𝑚.  We will show that a solution exists by describing 
a way to construct this solution. 
 
To construct a simultaneous solution, first let 
 

𝑀𝑀_𝑘𝑘 = 𝑚𝑚/𝑚𝑚_𝑘𝑘 
 
for 𝑘𝑘 = 1,2,⋯ ,𝑛𝑛.  That is, 𝑀𝑀_𝑘𝑘 is the product of the moduli except for 𝑚𝑚_𝑘𝑘.  
Because 𝑚𝑚_𝑖𝑖 and 𝑚𝑚_𝑘𝑘 have no common factors greater than 1 when 𝑖𝑖 ≠ 𝑘𝑘, it 
follows that 𝑔𝑔𝑔𝑔𝑔𝑔(𝑚𝑚_𝑘𝑘,𝑀𝑀_𝑘𝑘 ) = 1.  Consequently, by Theorem 1, we know 
that there is an integer 𝑦𝑦_𝑘𝑘, an inverse of 𝑀𝑀_𝑘𝑘 modulo 𝑚𝑚_𝑘𝑘, such that  
 

𝑀𝑀_𝑘𝑘 𝑦𝑦_𝑘𝑘 ≡ 1 (𝐦𝐦𝐦𝐦𝐦𝐦 𝑚𝑚_𝑘𝑘) 
 
To construct a simultaneous solution, form the sum 
 

𝑥𝑥 = 𝑎𝑎_1 𝑀𝑀_1 𝑦𝑦_1 + 𝑎𝑎_2 𝑀𝑀_2 𝑦𝑦_2 + ⋯+ 𝑎𝑎_𝑛𝑛 𝑀𝑀_𝑛𝑛 𝑦𝑦_𝑛𝑛 
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Will now show that 𝑥𝑥 is a simultaneous solution.  First, note that because 
𝑀𝑀_𝑗𝑗 ≡ 0( 𝐦𝐦𝐦𝐦𝐦𝐦 𝑚𝑚_𝑘𝑘) whenever 𝑗𝑗 ≠ 𝑘𝑘, all terms except the 𝑘𝑘th term in this 
sum are congruent to 0 modulo 𝑚𝑚_𝑘𝑘.  Because 𝑀𝑀_𝑘𝑘 𝑦𝑦_𝑘𝑘 ≡ 1 (𝐦𝐦𝐦𝐦𝐦𝐦 𝑚𝑚_𝑘𝑘) we 
see that 
 

𝑥𝑥 ≡ 𝑎𝑎_𝑘𝑘 𝑀𝑀_𝑘𝑘 𝑦𝑦_𝑘𝑘 ≡ 𝑎𝑎_𝑘𝑘  (𝐦𝐦𝐦𝐦𝐦𝐦 𝑚𝑚_𝑘𝑘 ), 
 
for 𝑘𝑘 = 1,2,⋯ ,𝑛𝑛.  We have shown that 𝑥𝑥 is a simultaneous solution to the 𝑛𝑛 
congruences. 

 
EXAMPLE 5  𝑥𝑥 ≡ 2 (𝐦𝐦𝐦𝐦𝐦𝐦 3), 

 𝑥𝑥 ≡ 3 (𝐦𝐦𝐦𝐦𝐦𝐦 5), 
 𝑥𝑥 ≡ 2 (𝐦𝐦𝐦𝐦𝐦𝐦 7)? 
 
To solve the system of congruences in Example 4, first let 𝑚𝑚 = 3 ∙ 5 ∙ 7 =
105,𝑀𝑀_1 = 𝑚𝑚/3 = 35,𝑀𝑀_2 = 𝑚𝑚/5 = 21, and 𝑀𝑀_3 = 𝑚𝑚/7 = 15.   
 
Find an inverse of 35 modulo 3. 

a  b  q  r  r  a  q  b 
35 = 3 . 11 + 2  2 = 35 - 11 . 3 
3 = 2 . 1 + 1  1 = 3 - 1 . 2 

 
Step  r  a  q  b 

2 1 = 3 − (35 − 3 ∙ 11) 
1 = 12 ∙ 3 − 35 2 = 35 - 11 . 3 

1 1 = 3 − 2 1 = 3 - 1 . 2 
Because 1 = −1 ∙ 35 + 12 ∙ 3, we can find inverses of 35 modulo 3 equal 
⋯    − 4,−1, 2, 5.⋯ Select the first positive inverse of  𝑀𝑀_1 = 35 modulo 3: 
The first positive inverse is 2.  
 
Find an inverse of 21 modulo 5. 
By inspection, we find 1 = 21− 4 ∙ 5. 𝟏𝟏 is an inverse of  𝑀𝑀_2 = 21 modulo 5.  
 
Find and inverse of 15 modulo 7. 
By inspection, we find 1 = 15− 2 ∙ 7.  𝟏𝟏 is an inverse of  𝑀𝑀_3 = 15 modulo 7.  
 
The solutions to this system are those 𝑥𝑥 such that 
 

𝑥𝑥 ≡ 𝑎𝑎_1 𝑀𝑀_1 𝑦𝑦_1 + 𝑎𝑎_2 𝑀𝑀_2 𝑦𝑦_2 + 𝑎𝑎_3 𝑀𝑀_3 𝑦𝑦_3
= 2 ∙ 35 ∙ 2 + 3 ∙ 21 ∙ 1 + 2 ∙ 15 ∙ 1 

= 233 ≡ 23( 𝐦𝐦𝐦𝐦𝐦𝐦 105), 
 
It follows that 23 is the smallest positive integer that is a simultaneous solution.  
We conclude that 23 is the smallest positive integer that leaves a remainder of 
2 when divided by 3, a remainder of 3 when divided by 5, and a remainder of 
2 when divided by 7. 
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EXAMPLE 6 Use the method of back substitution to find all integers 𝑥𝑥 such that 𝑥𝑥 ≡
1 (𝐦𝐦𝐦𝐦𝐦𝐦 5), 𝑥𝑥 ≡ 2( 𝐦𝐦𝐦𝐦𝐦𝐦 6), and  𝑥𝑥 ≡ 3( 𝐦𝐦𝐦𝐦𝐦𝐦 7). 

 Solution: By Theorem 4 in Section 4.1, the first congruence can be rewritten as 
an equality, 𝑥𝑥 = 5𝑡𝑡 + 1 where 𝑡𝑡 is an integer.  Substituting this expression for 
𝑥𝑥 into the second congruence tells us that 
 

5𝑡𝑡 + 1 ≡ 2(𝐦𝐦𝐦𝐦𝐦𝐦 6), 
 
which can be easily solved to show that 𝑡𝑡 ≡ 5(𝐦𝐦𝐦𝐦𝐦𝐦 6) (as the reader should 
verify).  Using Theorem 4 in Section 4.1 again, we see that 𝑡𝑡 = 6𝑢𝑢 + 5 where 𝑢𝑢 
is an integer.  Substituting this expression for 𝑡𝑡 into the equation 𝑥𝑥 = 5𝑡𝑡 + 1 
tells us that 𝑥𝑥 = 5(6𝑢𝑢 + 5) + 1 = 30𝑢𝑢 + 26.  We insert this into the third 
equation to obtain 
 

30𝑢𝑢 + 26 ≡ 3(𝐦𝐦𝐦𝐦𝐦𝐦 7) 
 
 
Solving this congruence tells us that 𝑢𝑢 = 6(𝐦𝐦𝐦𝐦𝐦𝐦 7) (as the reader should 
verify).  Theorem 4 in Section 4.1 tells us that 𝑢𝑢 = 7𝑣𝑣 + 6 where 𝑣𝑣 is an integer.  
Substituting this expression for 𝑢𝑢 into the equation 𝑥𝑥 = 30𝑢𝑢 + 26 tells us that 
𝑥𝑥 = 30(7𝑣𝑣 + 6) + 26 = 210𝑢𝑢 + 206.  Translating this back into a 
congruence, we find the solution to the simultaneous congruences, 
 

𝑥𝑥 ≡ 206(𝐦𝐦𝐦𝐦𝐦𝐦 210). 
 

 
Computer Arithmetic with Large Integers 
Read for yourself. 
 
Fermat’s Little Theorem 
 

THEOREM 3 FERMAT’S LITTLE THEOREM   If 𝑝𝑝 is prime and 𝑎𝑎 is an integer not divisible by 
𝑝𝑝, then 
 

𝑎𝑎𝑝𝑝−1 ≡ 1(𝐦𝐦𝐦𝐦𝐦𝐦 𝑝𝑝). 
 
Furthermore, for every integer 𝑎𝑎 we have 
 

𝑎𝑎𝑝𝑝 ≡ 𝑎𝑎(𝐦𝐦𝐦𝐦𝐦𝐦 𝑝𝑝). 
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EXAMPLE 9 Find   7222 𝐦𝐦𝐦𝐦𝐦𝐦  11. 
 Solution: We can use Fermat’s little theorem to evaluate 7222 𝐦𝐦𝐦𝐦𝐦𝐦  11 rather 

than using the fast modular exponentiation algorithm.  By Fermat’s little 
theorem we know that 710 = 1(𝐦𝐦𝐦𝐦𝐦𝐦 11), so (710)𝑘𝑘 = 1(𝐦𝐦𝐦𝐦𝐦𝐦 11) for every 
integer 𝑘𝑘. To take advantage of this last congruence, we divide the exponent 
222 by 10, finding that 222 =  22 ∙ 10 + 2.  We now see that  
 

7222 = 722∙10+2 = (710)2272 ≡ (1)22 ∙ 49 ≡ 5(𝐦𝐦𝐦𝐦𝐦𝐦 11) 
It follows that 7222 𝐦𝐦𝐦𝐦𝐦𝐦 11 = 5. 
 

 
Primitive Roots and Discrete Logarithms. 
Read for yourself. 
 
 


