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4.4 Solving Congruences

First Introduction

Our goal is to solve equations having the form ax = b (mod m). However, first we must discuss
the last part of the previous section titled gcds as Linear Combinations

THEOREM 6

DEFINITION 6

EXAMPLE 17

BEZOUT’S THEOREM If a and b are positive integers, then there exist integers
s and t such that ged(a, b) = sa + tb.

If @ and b are positive integers, then s and t such that gcd(a,b) = sa + tb
are called Bézout coef ficients of a and b (after Etienne Bézout, a French
mathematician of the eighteenth century). Also, the equation gcd(a,b) =
sa + tb is called Bézout’s identity.

Express gcd(252,198) = 18 as a linear combination of 252 and 198.
Solution: To show that gcd(252,198) = 18, the Euclidean algorithm uses
these divisions.

a b q r r a q b
252 = 198 1 + 54 54 = 252 - 1 198
198 = 54 3 + 36 36 = 198 - 3 54

54 = 36 1 + 18 18 = 54 - 1 36

Starting with the last division, substitute the equation for the remainder in the
previous division into the current computation.

Step r a q b
3 18 = 4- (252 — 198) — 198

18 =4-252—5-198 54 = 252 - 1 . 198
2 18 = 54 — (198 — 3 - 54)

18 =4-54 —198 36 = 198 - 3 . 54
1 18 =54—-36 18 = 54 - 1 . 36

Recall the Bézout’s identity gcd(a,b) = sa + tb. In this example, we have
gcd(252,198) =18 and, hence, s=4 and ¢t=-5 making
18 =4-252—-5-198

completing the solution
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Second Introduction

Solving linear congruences, which have the form ax = b (mod m), is an essential task in the
study of number theory and its applications. To solve linear congruences, we employ inverses
modulo m. We explain how to work backwards through steps of the Euclidean algorithm to find
inverses modulo m. Once we have found an inverse of a modulo m, we solve the congruence
ax = b (mod m) by multiplying both sides of the congruence by this inverse.

Linear Congruences
A congruence of the form

ax = b (mod m),

Where m is a positive integer, a and b are integers, and x is a variable, is called a linear
congruence.

How can we solve the linear congruence ax = b (mod m), that is, how can we find all integers x
that satisfy this congruence? One method that we will describe uses anintegera suchthata a =
1 (mod m), if such an integer exists. Such an integer a is said to be an inverse of a modulo m.
Theorem 1 guarantees that an inverse of a modulo m exists whenever a and m are relatively
prime.

THEOREM 1 If a and m are relatively prime integers and m > 1, then an inverse of a
modulo m exists. Furthermore, this inverse is unique modulo m. (That is,
there is a unique positive integer a less than m that is an inverse of a modulo
m and every other inverse of a modulo m is congruent to @ modulo m.)

EXAMPLE 1 Find an inverse of 3 modulo 7 by first finding Bézout coefficients of 3 and 7.
(Note that we have already shown that 5 is an inverse of 3 modulo 7 by
inspection.)

Solution: Because gcd(3,7) = 1, Theorem 1 tells us that an inverse of 3
modulo 7 exists. The Euclidean algorithm ends quickly when used to find the
greatest common divisor of 3 and 7.

7=2-3+1
From this equation we see that
-2:-34+1-7=1
Recall that gcd(a, b) = sa + tb defines s and t as Bézout coefficients. This
shows that —2 and 1 are Bézout coefficients of 3 and 7. We see that —2 is an

inverse of 3 modulo 7. Note that every integer congruent to —2 modulo 7 is
also an inverse of 3, such as 5, —9, 12, and so on.
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EXAMPLE 2 Find an inverse of 101 modulo 4620.

Solution: For completeness, we present all steps used to compute an inverse of
101 modulo 4620. (Only the last step goes beyond methods developed in
section 4.3 and illustrated in Example 17 in that section.) First, we use the
Euclidean algorithm to show that gcd(101,4620) = 1. Then we will reverse the
steps to find Bézout coefficients a and b such that 101a + 4620b = 1. It will
then follow that a is an inverse of 101 modulo 4620. The steps used by the
Euclidean algorithm to find gcd(101,4620) are

a b q r r a q b
4620 = 101 . 45 + 75 75 = 4620 - 45 101
101 = 75 1 + 26 26 = 101 - 1 75
75 = 26 2 + 23 23 = 75 - 2 26
26 = 23 1 + 3 3 = 26 - 1 23
23 = 3 7 + 2 = 23 - 7 3

3 = 2 1 + 1 1 = 3 -1 2

Because the last nonzero remainderis 1, we know that gcd(101,4620) = 1. We
can now find the Bézout coefficients for 101 and 4620 by working backwards
through these steps, expressing gcd(101,4620) = 1 in terms of each successive
pair of remainders. In each step we eliminate the remainder by expressing it as
a linear combination of the divisor and the dividend. We obtain

Step r a q b
6 1=26-101—35-(4620—45-

101)

1=1601-101—-35-4620 75 = 4620 - 45 . 101
5 1=26-(101—-75)—9-75

1=26-101-35-75 26 = 1010 - 1 . 75
4 1=8-26—-9-(75-2-26)

1=26-26—-9-75 23 = 75 - 2 . 26
3 1=8-(26-23)—23

1=8:-26—-9-23 3 = 26 - 1 . 23
2 1=3-1-(23-7-3)

1=8-3-1-23 2 = 23 - 7 . 3
1 1=3-1-2 1 = 3 - 1 . 2

1601-101-35-4620=1

That 1601 -101 — 35-4620 = 1 tells us that 1601 and —35 are Bézout
coefficients of 101 and 4620, and 1601 is an inverse of 101 modulo 4620.
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EXAMPLE 2.1  Find an inverse of 4 modulo 9.
Solution: First, we use the Euclidean algorithm to show that gcd(4,9) = 1.
Then we will reverse the steps to find Bézout coefficients s and t such that s4 +
t9 = 1. It will then follow that s is an inverse of 4 modulo 9. The steps used
by the Euclidean algorithm to find gcd(4,9) are

Dividend Divisor Quotient Remainder
9 = 4 . 2 + 1
4 = 1 . 4 + 0
1=1-9-2-4

Thatl1 =1-9 — 2 -4 tellsus that 1 and —2 are Bézout coefficients of 9 and 4,
and —2 is an inverse of 4 modulo 9. Inverses of 4 modulo 9 are =2 + k-9 =
---,—20,—-11,-2,7,16, 25, ---

EXAMPLE 2.2 Find an inverse of 19 modulo 141.
Solution: First, we use the Euclidean algorithm to show that gcd(19,141) =
1. Then we will reverse the steps to find Bézout coefficients s and t such
that s19 + t141 = 1. It will then follow that s is an inverse of 19 modulo 141.
The steps used by the Euclidean algorithm to find gcd(19,141) are

a b q r r a q b
141 = 19 7 + 8 8 = 141 - 19 7
19 = 8 2 + 3 3 = 19 - 8 2
8 = 3 2 + 2 2 = 8 - 3 2
3 = 2 1 +1 1 = 3 - 2 1
Step r a q b
4 1=3-19-7-(141-7-19)
1=52-19-7-141 8 = 141 - 19 . 7
3 1=3-(19-2-8)—8
1=3-19-7-8 3 = 19 - 8 . 2
2 1=3-(8-3-2)
1=3-3-8 2 = 8 - 3 .2
1 1=3-2 1 = 3 -2 .1

1=52-19-7-141

That1 =52-19 — 7 - 141 tells us that 52 and —7 are Bézout coefficients of
19 and 141, and 52 is an inverse of 19 modulo 141. Inverses of 19
modulo 141 are 52 + k- 141 =---,—89,52,193, ---
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EXAMPLE 2.3  Find an inverse of 55 modulo 89.
Solution: First, we use the Euclidean algorithm to show that gcd(55,89) = 1.
Then we will reverse the steps to find Bézout coefficients s and t such
that s55 + t89 = 1. It will then follow that s is an inverse of 55 modulo 89.
The steps used by the Euclidean algorithm to find gcd(55,89) are

a
89
55
34
21
13

b q r r
= 55 1 + 34 34
= 34 1 + 21 21
= 21 1 + 13 13
= 13 1 + 8 8
= 8 1 + 5 5
= 5 1 + 3 3
= 3 1 + 2 2
= 2 1 + 1 1

1=13-55—21-(89 — 55)

1=34-55-21-89 34
1=13-(55—34)—8-34
1=13-55—21-34 21
1=5-21-8-(34—21)
1=13-21-8-34 13
1=5-(21—-13)—3-13
1=5-21-8-13 8
1=2-8-3-(13-8)
1=5-8-3-13 5
1=2-(8-5)—5
1=2-8-3-5 3
1=3-(5-23)

1=2-3-5 2
1=3-2 1

1=34-55-21-89

Lecture 25

4.4 Solving Congruences
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That 1 = 34 55— 2189 tells us that 34 and —21 are Bézout coefficients
of 55 and 89, and 34 is an inverse of 55 modulo 89. Inverses of 55 modulo 89
are34 + k-89 =---,—-55,34,123, ---

Once we have an inverse a of a modulo m, we can solve the congruence ax = b(mod m) by

multiplying both sides of the linear congruence by a, as Example 3 illustrates.
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EXAMPLE 3

EXAMPLE 3.1

4.4 Solving Congruences

What are the solutions of the linear congruence 3x = 4 (mod 7)?
Solution: By Example 1 we know that —2 is an inverse of 3 modulo 7.
Recall gcd(3,7) =—=2-3+1-7 =1 from example 1. Additional inverse
values include 5, 12, ... Let us select the first positive inverse value, 5. In the
congruence

ax = b(mod m)

If b is an inverse of b modulo m, then

x=(b-b—m)modm
x=(5-4—-7)mod7 =6

Applying our finding, we have
3x=3-6=18=4(mod 7)

which shows that all such x satisfy the congruence. We conclude that the
solutions to the congruence are integers x such that x = 6 (mod 7), namely,
6,13,20,...,and —1,-8,—15, ....

Test: Does x = —8 satisfy the congruence, 3x =4 (mod 7)? Is —24 =
4 (mod 7)? Recall the definition of congruence. We say that a = b(mod m)
if m|(a — b). Does 7|(—24 — 4)? Answer, yes.

Let us try another example. What are the solutions of the linear

congruence 19x = 4 (mod 141)?

Solution: From Example 2.2, we know that 52 is an inverse of 19 modulo 141
ax = b(mod m)

If b is an inverse of b modulo m, then

x=(b-b—m)modm
x = (52+4—141) mod 141 = 67

Applying our finding, we have
19x =19-67 = 1273 = 4(mod 141)

which shows that all such x satisfy the congruence. We conclude that the
solutions to the congruence are integers x such thatx = 67 (mod 141),
namely, 67,208, 349, ..., and —74,—215,-356, ....

Test: Does x = —74 satisfy the congruence, 19x = 4 (mod 141)? Is —1406
4 (mod 141)? Recall the definition of congruence. We say that a

b(mod m) if m|(a — b). Does 141|(~1406 — 4)? Answer, yes. —oo—* =

10
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The Chinese Remainder Theorem

EXAMPLE 4 In the first century, the Chinese mathematician Sun-Tsu asked:

There are certain things whose number is unknown. When divided by 3,
the remainder is 2; when divided by 5, the remainder is 3; and when
divided by 7, the remainder is 2. What will be the number of things?

This puzzle can be translated into the following question: What are the
solutions of the systems of congruences

x = 2 (mod 3),
x = 3 (mod 5),
x =2 (mod?7)?

We will solve this system, and with it Sun-Tsu’s puzzle, later in this section.

THEOREM 2  THE CHINESE REMAINDER THEOREM Letm_1,m_2, ---, m_n be pairwise
relatively prime positive integers greater thanoneand a_1,a_2,-:-,a_n
arbitrary integers. Then the system

x=al (modm_1),
x=a?2 (modm_.2),
x=an (modm.n)

has a unique solution modulom = m_1m_2 :--m_n. (That s, there is a
solution x with 0 < x < m, and all other solutions are congruent modulo m
to this solution.)

Proof: To establish this theorem, we need to show that a solution exists and
that it is unique modulo m. We will show that a solution exists by describing
a way to construct this solution.

To construct a simultaneous solution, first let
M_k =m/m_k
fork =1,2,---,n. Thatis, M_k is the product of the moduli except for m_k.
Because m_i and m_k have no common factors greater than 1 wheni # k, it
follows that gcd(m_k, M_k ) = 1. Consequently, by Theorem 1, we know
that there is an integer y_k, an inverse of M_k modulo m_k, such that
M_ky k=1 (modm_k)

To construct a simultaneous solution, form the sum

x=alMlyl+al2M2y2+--+anMnyn
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EXAMPLE 5

4.4 Solving Congruences

Will now show that x is a simultaneous solution. First, note that because
M_j = 0( mod m_k) whenever j # k, all terms except the kth term in this
sum are congruent to 0 modulo m_k. Because M_k y_k = 1 (mod m_k) we
see that

x=akMkyk=ak (modm_k),

fork =1,2,---,n. We have shown that x is a simultaneous solution to the n
congruences.

x = 2 (mod 3),
x = 3 (mod 5),
x = 2 (mod 7)?

To solve the system of congruences in Example 4, first let m=3-5-7 =
105,M_1=m/3=35M_2=m/5=21,and M_3 =m/7 = 15.

Find an inverse of 35 modulo 3.

a b q r r a q b
35 = 3 11+ 2 2 = 35 - 11 3
3 = 2 1+ 1 1 = 3 -1 .2
Step r a q b
2 1=3-(35-3-11)
1=12-3-35 2 = 3 - 11 . 3
1 1=3-2 1 = 3 - 1 . 2
Because 1 = —1-354 123, we can find inverses of 35 modulo 3 equal

—4,—-1,2,5.-- Select the first positive inverse of M_1 = 35 modulo 3:
The first positive inverse is 2.

Find an inverse of 21 modulo 5.
By inspection, we find 1 = 21 — 4+ 5. 1 is an inverse of M_2 = 21 modulo 5.

Find and inverse of 15 modulo 7.
By inspection, we find 1 = 15—2-7. 1isaninverse of M_3 = 15 modulo 7.

The solutions to this system are those x such that

x=alMlyl4+al2M2y2+a3M3y3
=2-35-2+3-21-1+2-15-1
= 233 = 23(mod 105),

It follows that 23 is the smallest positive integer that is a simultaneous solution.
We conclude that 23 is the smallest positive integer that leaves a remainder of
2 when divided by 3, a remainder of 3 when divided by 5, and a remainder of
2 when divided by 7.
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Use the method of back substitution to find all integers x such that x =
1 (mod 5),x = 2(mod 6),and x = 3( mod 7).

Solution: By Theorem 4 in Section 4.1, the first congruence can be rewritten as
an equality, x = 5t + 1 where t is an integer. Substituting this expression for
x into the second congruence tells us that

5t+1 = 2(mod 6),

which can be easily solved to show that t = 5(mod 6) (as the reader should
verify). Using Theorem 4 in Section 4.1 again, we see that t = 6u + 5 where u
is an integer. Substituting this expression for t into the equation x = 5t + 1
tells us thatx = 5(6u +5) + 1 = 30u + 26. We insert this into the third
equation to obtain

30u + 26 = 3(mod 7)

Solving this congruence tells us that u = 6(mod 7) (as the reader should
verify). Theorem 4 in Section 4.1 tells us thatu = 7v 4+ 6 where v is an integer.
Substituting this expression for u into the equation x = 30u + 26 tells us that
x =30(7v+6) + 26 = 210u + 206. Translating this back into a
congruence, we find the solution to the simultaneous congruences,

x = 206(mod 210).

Computer Arithmetic with Large Integers

Read for yourself.

Fermat’s Little Theorem

THEOREM 3

FERMAT’S LITTLE THEOREM If p is prime and a is an integer not divisible by
p, then

aP~! = 1(mod p).
Furthermore, for every integer a we have

a? = a(mod p).
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EXAMPLE9  Find 7222 mod 11.
Solution: We can use Fermat’s little theorem to evaluate 7222 mod 11 rather
than using the fast modular exponentiation algorithm. By Fermat’s little
theorem we know that 71 = 1(mod 11), so (71°)* = 1(mod 11) for every
integer k. To take advantage of this last congruence, we divide the exponent
222 by 10, finding that 222 = 22-10 + 2. We now see that

7222 = 7221042 = (710)2272 = (1)22. 49 = 5(mod 11)

It follows that 7222 mod 11 = 5.

Primitive Roots and Discrete Logarithms.
Read for yourself.
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