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THEOREM 1 Let b be a positive integer greater than 1.  Then if n is a positive integer, it can 
be expressed uniquely in the form 

𝑛𝑛 = 𝑎𝑎𝑘𝑘𝑏𝑏𝑘𝑘 + 𝑎𝑎𝑘𝑘−1𝑏𝑏𝑘𝑘−1 + ⋯+ 𝑎𝑎1𝑏𝑏 + 𝑎𝑎0. 
where k is a nonnegative integer, 𝑎𝑎0,𝑎𝑎1,⋯𝑎𝑎𝑘𝑘 are nonnegative integers less 
than b, and 𝑎𝑎𝑘𝑘 ≠ 0. 

 
Remark • Theorem 1 is employing formal mathematical terminology to express that 

our number system is a positional number system.  For example, 
95410means 954 base 10 and can be expressed as  

9 × 102 + 5 × 101 + 4 × 100 
The digits of the number 954 are in positions 2, 1, and 0 respectively.  
Furthermore, the positions are exponents of the base. 

 
EXAMPLE 1.1 Find the Decimal equivalent of (2𝐴𝐴𝐴𝐴0𝐵𝐵)16 
 Solution:   
 

position digit 
decimal 

value 
exponentiated 

base subtotal 
 4 2 2 65536 131072 
 3 A 10 4096 40960 
 2 E 14 256 3584 
 1 0 0 16 0 
 0 B 11 1 11 
 Total    175627 

 
EXAMPLE 1.2 Find the decimal equivalent of 1101 1010 1011 0010 
 Solution:   
 1. First, convert the binary integer to hexadecimal by making groups of 

four bits starting from the binary point. 
1101 1010 1011 0010 

2. Next convert each group of four – each nibble – to its hexadecimal 
equivalent. 
D A B 2 

3. Use the method of example 1.1 to convert the hexadecimal value to 
decimal. 

 
position digit 

decimal 
value 

exponentiated 
base subtotal 

 3 D 13 4096 53248 
 2 A 10 256 2560 
 1 B 11 16 176 
 0 2 2 1 2 
 Total    55986 
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The Radix Divide/Multiply Method 
Objective: Covert a decimal number to an equivalent number in another radix (base). 
Solution: Step Discussion 
 1 Separate the integer and fractional portions of the decimal 

number 
 Integer portion conversion algorithm: 
 Step Discussion 
 0 Divide the decimal number by the radix.  The remainder is ia , 

i=0,1,2,3 … n-1.  Quotient iq  becomes the dividend in the next 
iteration. 

:r  radix, divisor 

id : dividend in iteration i.  0d  is the initial dividend, the decimal 
number to be converted to the foreign base. 

iq : quotient in iteration i 

:ia remainder produced in iteration i, ith digit of the number in 
radix r. 

 rddrda iiiii ÷== +,mod  
 

 1 … n-1 Perform step 0 until the dividend equal zero. 
 
Example: Convert 2910 to binary. 

Step Radix-Divisor Dividend Quotient Remainder 
ia  

0 2 29 14 1 0a  
1 2 14 7 0 

1a  
2 2 7 3 1 

2a  
3 2 3 1 1 3a  
4 2 1 0 1 

4a  
5 2 0 stop!    

 
2910 = 111012 

 

111012 =  1 ×  24 = 16 
  + 1 ×  23 = 8 
  + 1 ×  22 = 4 
  + 0 ×  21 = 0 
  + 1 ×  20 = 1 
       29 
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EXAMPLE 2.1 Find the binary equivalent of (29)10 
 Solution:   
 1. First, convert the decimal number to hexadecimal using the radix-

divide method shown above. 
 Radix-

Divisor 
Dividend Quotient Remainder Hexadecimal 

 16 29 1 13 D 
 16 1 0 1 1 
 16 0 stop!    
 2. Next, convert each hexadecimal digit to binary. 

1 D = 0001 1101 
3. Last, remove leading zeroes. 

1 1101 
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Purpose: complements simplify binary subtraction 
 
Binary subtraction requires: 

1. complement 
2. fixed field widths for binary numbers 

 
One’s complement:  

invert all bits 1 → 0,0 → 1 

Note:  The only time a number is complemented is when the number is 

negative. 

 
Example: consider  

10011110, the one’s complement is 
01100001 

 
Think of the one’s complement as the difference between the initial operand and a number of 
equal length having a one in every position. 
 
Example: 

  11111111 
 -10011110 
  01100001 

 
Two’s complement is one more than the one’s complement 
 
Example: find the two’s complement of 10011110 

1. Original value  10011110 
2. One’s complement  01100001 
3. Add one +       1 
   01100010 
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Two’s Complement Representation 
 

1. Choose a field width.  Common field widths are 4, 8, 16, 32, and 64 bits. 
2. A binary number is positive if the most significant digit is zero (0), otherwise it is negative. 
 

Example: Find the decimal equivalent of the following 16-bit two’s complement number 
 
1001 1100 0000 0101 

 
1. Make the two’s complement number positive.  Find the magnitude of the two’s complement. 

1.1. First, find the one’s complement by inverting all the bits. 
 
1001 1100 0000 0101 
0110 0011 1111 1010 

 
1.2. Next, add one (1) to find the two’s complement. 

 
0110 0011 1111 1010 
     +1 
0110 0011 1111 1011 

 
2. Convert to decimal. 

2.1. First convert to hexadecimal. 
 

0110 0011 1111 1011 
6 3 F B 

 
2.2. Next, convert to decimal. 

 
Hex Dec.    

6 6 ×  163 24576 
3 3 ×  162 768 
F 15 ×  161 240 
B 11 ×  160 11 
    25595 

 
3. Remember that the number was negative.  Thus  

1001 1100 0000 0101 = -25595 
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Two’s Complement Subtraction  
 
𝑀𝑀 and 𝑆𝑆 are the minuend and subtrahend respectively and both are in two’s complement 
representation. 

1. Define a field width and add 𝑀𝑀 to the two’s complement of 𝑆𝑆. Discard any digits that carry 
into positions more significant than those defined by the field width.  Discard any carry 
out digits. 

 
Example Find the difference (1010 − 0111).  
Find the 2’s complement of 𝑆𝑆 = 0111.  

  0111 
1’s complement of 𝑆𝑆  1000 
Add 1 to find 2’s complement of 𝑆𝑆 +   1 
2’s complement of 𝑆𝑆  1001 

 
Add 𝑀𝑀 to the two’s complement of 𝑆𝑆. 
𝑀𝑀   1010 10 
2’s complement of 𝑆𝑆 +1001 -7 
𝐷𝐷 = 𝑀𝑀− 𝑆𝑆  10011  3 
Final result  0011  3 

 
2. Determining the sign. 

2.1. If the most significant digit is 1, then the number is negative, otherwise it is positive.   
3. Finding the magnitude of a two’s complement number. 

3.1. If the number is not negative – that is – if the number has a zero in its most significant 
bit, then convert it to decimal as we have discussed. 
 
Example: Find the magnitude of the 8-bit, two’s complement number 01101001. 

1.1. First, convert it to hexadecimal. 
011010012 = 6916  

1.2. Next, convert it to decimal. 
6916 = 6 × 16 + 9 = 105  

 
3.2. If the number is negative – that is – if the number has a one in its most significant 

bit, then complement the number, convert it to decimal as we have discussed, and 
recall that the number was negative. 

 
Example: Find the magnitude of the 8-bit, two’s complement number 10110110. 

1. Complement the number 
1.1. One’s complement 01001001 
1.2. Two’s complement 01001010 

2. Convert the number to decimal 
2.1. First, convert it to hexadecimal. 

010010102 = 4𝐴𝐴16  
2.2. Next, convert it to decimal. 

4𝐴𝐴16 = 4 × 16 + 10 = 74  
3. Recall that the number was negative 

−74  
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4. Determining if overflow occurred. 

4.1. Overflow occurs when adding two positive numbers, adding two negative numbers, 
subtracting a positive number from a negative number, or when subtracting a 
negative number from a positive number.  When the magnitude of the result exceeds 
the range of values that can be represented in the field an overflow has occurred.   
 
Consider a 4-bit two’s complement number.  The range of values for a 4-bit two 
complement number is −8 ≤ 𝑣𝑣 ≤ 7.  Whenever the result falls outside the range, 
an overflow has occurred.  
 
Example: Find the sum of 4+5 using 4-bit two’s complement numbers. 

          
      1    
 4     0 1 0 0 

+ 5   +  0 1 0 1 
 9     1 0 0 1 
      0 1 1 0 
    +     1 
      0 1 1 1 

We observe the sum to be 1001, a negative number in 4-bit two’s complement 
representation.  Immediately, we see that a sign inversion has occurred. The sum of 
two positive numbers is negative.  Clearly, this is impossible.  Therefore, an overflow 
has occurred. 
 

4.2. Special case: Overflow in 2’s complement numbers.  Overflow occurs when the carry 
into the sign bit is unequal to the carry out. 

 
 

Example: consider a 4-bit 2’s complement number.  A number, 𝑛𝑛, ranges over the 
interval, −8 ≤ 𝑛𝑛 ≤ 7,  Example: Find the sum of -5 and -4.  

 
Decimal   Binary      2’s Complement 

                     
                CO CI    
                1 0    
 - 5    0 1 0 1  2’s comp →   1 0 1 1 
 - 4    0 1 0 0  2’s comp → +  1 1 0 0 
 - 9              1 0 1 1 1 
                     
                     

 
In the example above, CI is an abbreviation for Carry In (to the sign bit) and CO 
means Carry Out (of the sign bit). 
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Algorithms for Integer Operations 
 

ALGORITHM 2 Addition of Integers 
procedure 𝑎𝑎𝑎𝑎𝑎𝑎(𝑎𝑎,𝑏𝑏: positive integers) 
{The binary expansions of a and b are (𝒂𝒂𝒏𝒏−𝟏𝟏𝒂𝒂𝒏𝒏−𝟐𝟐⋯𝒂𝒂𝟏𝟏𝒂𝒂𝟎𝟎)𝟐𝟐 and (𝒃𝒃𝒏𝒏−𝟏𝟏𝒃𝒃𝒏𝒏−𝟐𝟐⋯𝒃𝒃𝟏𝟏𝒃𝒃𝟎𝟎)𝟐𝟐 
respectively where a and b are both binary numbers.} 
c:=0 
for 𝑗𝑗:=0 to n-1 
begin 
 𝑑𝑑 ≔ 𝑎𝑎𝑗𝑗 + 𝑏𝑏𝑗𝑗 + 𝑐𝑐 
 𝑠𝑠𝑗𝑗 ≔ 𝑑𝑑 𝐦𝐦𝐦𝐦𝐦𝐦 2 
 if 𝑑𝑑 > 1 then 𝑐𝑐 ≔ 𝟏𝟏 else 𝑐𝑐 ≔ 𝟎𝟎 
end 
𝑠𝑠𝑛𝑛 = 𝑐𝑐  
{The binary expansion of the sum is (𝒔𝒔𝒏𝒏𝒔𝒔𝒏𝒏−𝟏𝟏⋯𝒔𝒔𝟎𝟎)𝟐𝟐} 

 
EXAMPLE 7 Add 𝑎𝑎 = (1110)2 and 𝑏𝑏 = (1011)2 
 Solution:  Follow the procedure specified in algorithm 2 
 c:=0 

𝑗𝑗 = 0   𝑑𝑑 ≔ 𝑎𝑎0 + 𝑏𝑏0 + 𝑐𝑐 = 0 + 1 + 0 = 1 
 𝑠𝑠0 ≔ 𝑑𝑑 𝐦𝐦𝐦𝐦𝐦𝐦 2 = 1 𝐦𝐦𝐦𝐦𝐦𝐦 2 = 𝑠𝑠0 = 1 
 if 𝑑𝑑 > 1 then 𝑐𝑐 ≔ 𝟏𝟏 else 𝑐𝑐 ≔ 𝟎𝟎 ⇒ 𝑐𝑐 = 𝟎𝟎  

𝑗𝑗 = 1  𝑑𝑑 ≔ 𝑎𝑎1 + 𝑏𝑏1 + 𝑐𝑐 = 1 + 1 + 0 = 2 
 𝑠𝑠1 ≔ 𝑑𝑑 𝐦𝐦𝐦𝐦𝐦𝐦 2 = 2 𝐦𝐦𝐦𝐦𝐦𝐦 2 = 𝑠𝑠1 = 0 
 if 𝑑𝑑 > 1 then 𝑐𝑐 ≔ 𝟏𝟏 else 𝑐𝑐 ≔ 𝟎𝟎 ⇒ 𝑐𝑐 = 𝟏𝟏 

𝑗𝑗 = 2  𝑑𝑑 ≔ 𝑎𝑎2 + 𝑏𝑏2 + 𝑐𝑐 = 1 + 0 + 1 = 2 
 𝑠𝑠2 ≔ 𝑑𝑑 𝐦𝐦𝐦𝐦𝐦𝐦 2 = 2 𝐦𝐦𝐦𝐦𝐦𝐦 2 = 𝑠𝑠2 = 0 
 if 𝑑𝑑 > 1 then 𝑐𝑐 ≔ 𝟏𝟏 else 𝑐𝑐 ≔ 𝟎𝟎 ⇒ 𝑐𝑐 = 𝟏𝟏 

𝑗𝑗 = 3  𝑑𝑑 ≔ 𝑎𝑎3 + 𝑏𝑏3 + 𝑐𝑐 = 1 + 1 + 1 = 3 
 𝑠𝑠3 ≔ 𝑑𝑑 𝐦𝐦𝐦𝐦𝐦𝐦 2 = 3 𝐦𝐦𝐦𝐦𝐦𝐦 2 = 𝑠𝑠3 = 1 
 if 𝑑𝑑 > 1 then 𝑐𝑐 ≔ 𝟏𝟏 else 𝑐𝑐 ≔ 𝟎𝟎 ⇒ 𝑐𝑐 = 𝟏𝟏 

𝑗𝑗 = 4  𝑠𝑠4 = 𝑐𝑐 = 1 
 𝑠𝑠 = 11001  
Check  

𝑗𝑗 = 4 3 2 1 0    
Carry 1 1 1 0     
  1 1 1 0   14 
  1 0 1 1   +11 
 1 1 0 0 1   25 

25 16 8   1    
 
  



Discrete Structures   Lecture 23 
CMSC 2123  4.2 Integer Representation and Algorithms 

9 
 

 
ALGORITHM 5 Modular Exponentiation 
procedure 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 
 (𝑏𝑏: integer 
 ,𝑛𝑛 = (𝑛𝑛𝑘𝑘−1𝑛𝑛𝑘𝑘−2 ⋯𝑛𝑛1𝑛𝑛0)2: positive integer 
 ,m: positive integer 
 ) 
𝑥𝑥 ≔ 1  
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ≔ 𝑏𝑏 𝐦𝐦𝐦𝐦𝐦𝐦 𝑚𝑚  
𝐟𝐟𝐟𝐟𝐟𝐟 𝑖𝑖 ≔ 𝟎𝟎 𝐭𝐭𝐭𝐭 𝑘𝑘 − 𝟏𝟏  
𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛𝐛  
 𝐢𝐢𝐢𝐢 𝑎𝑎𝑖𝑖 = 𝟏𝟏 𝐭𝐭𝐭𝐭𝐭𝐭𝐭𝐭 𝑥𝑥 ≔ (𝑥𝑥 ∙ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)𝐦𝐦𝐦𝐦𝐦𝐦 𝑚𝑚 
 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ≔ (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∙ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)𝐦𝐦𝐦𝐦𝐦𝐦 𝑚𝑚 
𝐞𝐞𝐞𝐞𝐞𝐞  
{𝒙𝒙 = 𝒃𝒃𝒏𝒏 𝐦𝐦𝐦𝐦𝐦𝐦 𝒎𝒎} 

 
EXAMPLE 11 Use Algorithm 5 to find 3644 𝐦𝐦𝐦𝐦𝐦𝐦 645. 
 Solution: Algorithm 5 initially sets 𝑥𝑥 = 1 and ;𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 3 𝐦𝐦𝐦𝐦𝐦𝐦 645 = 3. In 

the computation of 3644 𝐦𝐦𝐦𝐦𝐦𝐦 645,  this algorithm determines 32𝑗𝑗  𝐦𝐦𝐦𝐦𝐦𝐦 645 
for 𝑗𝑗 = 1, 2,⋯ ,9 by successively squaring the and reducing modulo 645.  If 
𝑎𝑎𝑗𝑗 = 1 (where 𝑎𝑎𝑗𝑗 is the bit in the 𝑗𝑗th position in the binary expansion of 644), 
it multiplies the current value of 𝑥𝑥 by 32𝑗𝑗  𝐦𝐦𝐦𝐦𝐦𝐦 645 and reduces the result 
modulo 645.  Here are the steps used: 

  
 𝒊𝒊 𝒂𝒂𝒊𝒊 𝒙𝒙 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 
 0 0 1 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 32𝐦𝐦𝐦𝐦𝐦𝐦 645 =

9 𝐦𝐦𝐦𝐦𝐦𝐦 645 = 𝟗𝟗  
 1 0 1 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 92𝐦𝐦𝐦𝐦𝐦𝐦 645 =

81 𝐦𝐦𝐦𝐦𝐦𝐦 645 = 𝟖𝟖𝟖𝟖  
 2 1 (1 ∙ 81) 𝐦𝐦𝐦𝐦𝐦𝐦 645 = 81 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 812𝐦𝐦𝐦𝐦𝐦𝐦 645 =

6521 𝐦𝐦𝐦𝐦𝐦𝐦 645 = 𝟏𝟏𝟏𝟏𝟏𝟏  
 3 0 81 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 1112𝐦𝐦𝐦𝐦𝐦𝐦 645 =

12,321 𝐦𝐦𝐦𝐦𝐦𝐦 645 = 𝟔𝟔𝟔𝟔  
 4 0 81 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 662𝐦𝐦𝐦𝐦𝐦𝐦 645 =

4356 𝐦𝐦𝐦𝐦𝐦𝐦 645 = 𝟒𝟒𝟒𝟒𝟒𝟒  
 5 0 81 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 4862𝐦𝐦𝐦𝐦𝐦𝐦 645 =

236,196 𝐦𝐦𝐦𝐦𝐦𝐦 645 = 𝟏𝟏𝟏𝟏𝟏𝟏  
 6 0 81 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 1262𝐦𝐦𝐦𝐦𝐦𝐦 645 =

15,876 𝐦𝐦𝐦𝐦𝐦𝐦 645 = 𝟑𝟑𝟑𝟑𝟑𝟑  
 7 1 (81 ∙ 396) 𝑚𝑚𝑚𝑚𝑚𝑚 645 = 471 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 3962𝐦𝐦𝐦𝐦𝐦𝐦 645 =

156,816 𝐦𝐦𝐦𝐦𝐦𝐦 645 = 𝟖𝟖𝟖𝟖  
 8 0 471 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 812𝐦𝐦𝐦𝐦𝐦𝐦 645 =

6561 𝐦𝐦𝐦𝐦𝐦𝐦 645 = 𝟏𝟏𝟏𝟏𝟏𝟏  
 9 1 (471 ∙ 111)𝑚𝑚𝑚𝑚𝑚𝑚 645 = 𝟑𝟑𝟑𝟑  
  
 3644 𝐦𝐦𝐦𝐦𝐦𝐦 645 = 36 
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Exponentiation by squaring: 

𝑥𝑥𝑛𝑛 = �𝑥𝑥(𝑥𝑥2)
𝑛𝑛−1
2 ,   𝑖𝑖𝑖𝑖 𝑛𝑛 𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜

(𝑥𝑥2)
𝑛𝑛
2,   𝑖𝑖𝑖𝑖 𝑛𝑛 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒       

 

 

Example: 𝑥𝑥7 = 𝑥𝑥(𝑥𝑥2)
7−1
2 = 𝑥𝑥(𝑥𝑥2)

6
2 = 𝑥𝑥(𝑥𝑥2)3 = 𝑥𝑥(𝑥𝑥2×3) = 𝑥𝑥(𝑥𝑥6) = 𝑥𝑥7 

Example: 𝑥𝑥10 = (𝑥𝑥2)
10
2 = (𝑥𝑥2)5 = (𝑥𝑥2×5) = 𝑥𝑥10 

 
double exp_by_squaring(double x,unsigned int n) 
{ if (n==0) return 1.0; 

if (n==1) return x; 
if (n%2) return x*exp_by_squaring(x*x,(n-1)/2); 
else return exp_by_squaring(x*x,n/2); 

} 
 


