

THEOREM 1

Let b be a positive integer greater than 1. Then if n is a positive integer, it can be expressed uniquely in the form

$$n = a_k b^k + a_{k-1} b^{k-1} + \cdots + a_1 b + a_0.$$

where k is a nonnegative integer, a_0, a_1, \dots, a_k are nonnegative integers less than b , and $a_k \neq 0$.

Remark

- Theorem 1 is employing formal mathematical terminology to express that our number system is a *positional* number system. For example, 954_{10} means 954 base 10 and can be expressed as

$$9 \times 10^2 + 5 \times 10^1 + 4 \times 10^0$$

The digits of the number 954 are in positions 2, 1, and 0 respectively. Furthermore, the positions are exponents of the base.

EXAMPLE 1.1 Find the Decimal equivalent of $(2AE0B)_{16}$

Solution:

position	digit	decimal value	exponentiated base	subtotal
4	2	2	65536	131072
3	A	10	4096	40960
2	E	14	256	3584
1	0	0	16	0
0	B	11	1	11
Total				175627

EXAMPLE 1.2 Find the decimal equivalent of 1101 1010 1011 0010

Solution:

- First, convert the binary integer to hexadecimal by making groups of four bits starting from the binary point.
1101 1010 1011 0010
- Next convert each group of four – each nibble – to its hexadecimal equivalent.
D A B 2
- Use the method of example 1.1 to convert the hexadecimal value to decimal.

position	digit	decimal value	exponentiated base	subtotal
3	D	13	4096	53248
2	A	10	256	2560
1	B	11	16	176
0	2	2	1	2
Total				55986

The Radix Divide/Multiply Method

Objective:	Convert a decimal number to an equivalent number in another radix (base).	
Solution:	Step	Discussion
	1	Separate the integer and fractional portions of the decimal number
Integer portion conversion algorithm:		
	Step	Discussion
	0	<p>Divide the decimal number by the radix. The remainder is a_i, $i=0,1,2,3 \dots n-1$. Quotient q_i becomes the dividend in the next iteration.</p> <p>r : radix, divisor</p> <p>d_i : dividend in iteration i. d_0 is the initial dividend, the decimal number to be converted to the foreign base.</p> <p>q_i : quotient in iteration i</p> <p>a_i : remainder produced in iteration i, i^{th} digit of the number in radix r.</p> $a_i = d_i \bmod r, d_{i+1} = \lfloor d_i \div r \rfloor$
	1 ... $n-1$	Perform step 0 until the dividend equal zero.

Example: Convert 29_{10} to binary.

Step	Radix-Divisor	Dividend	Quotient	Remainder	a_i
0	2	29	14	1	a_0
1	2	14	7	0	a_1
2	2	7	3	1	a_2
3	2	3	1	1	a_3
4	2	1	0	1	a_4
5	2	0 stop!			

$$29_{10} = 11101_2$$

11101₂	=		1	\times	2⁴	=	16
		+	1	\times	2³	=	8
		+	1	\times	2²	=	4
		+	0	\times	2¹	=	0
		+	1	\times	2⁰	=	1
							29

EXAMPLE 2.1 Find the binary equivalent of $(29)_{10}$

Solution:

1. First, convert the decimal number to hexadecimal using the radix-divide method shown above.

Radix-Divisor	Dividend	Quotient	Remainder	Hexadecimal
16	29	1	13	D
16	1	0	1	1
16	0 stop!			

2. Next, convert each hexadecimal digit to binary.

$$1 \text{ D} = 0001 \ 1101$$

3. Last, remove leading zeroes.

$$1 \ 1101$$

Purpose: complements simplify binary subtraction

Binary subtraction requires:

1. complement
2. fixed field widths for binary numbers

One's complement:

invert all bits $1 \rightarrow 0, 0 \rightarrow 1$

Note: The *only* time a number is complemented is when the number is *negative*.

Example: consider

10011110, the one's complement is
01100001

Think of the one's complement as the difference between the initial operand and a number of equal length having a one in every position.

Example:

$$\begin{array}{r} 11111111 \\ -10011110 \\ \hline 01100001 \end{array}$$

Two's complement is one more than the one's complement

Example: find the two's complement of 10011110

1. Original value
2. One's complement
3. Add one

$$\begin{array}{r} 10011110 \\ 01100001 \\ + \quad \quad \quad 1 \\ \hline 01100010 \end{array}$$

Two's Complement Representation

1. Choose a field width. Common field widths are 4, 8, 16, 32, and 64 bits.
2. A binary number is positive if the most significant digit is zero (0), otherwise it is negative.

Example: Find the decimal equivalent of the following 16-bit two's complement number

1001 1100 0000 0101

1. Make the two's complement number positive. Find the magnitude of the two's complement.
- 1.1. First, find the one's complement by inverting all the bits.

1001 1100 0000 0101
0110 0011 1111 1010

- 1.2. Next, add one (1) to find the two's complement.

0110 0011 1111 1010
+1
0110 0011 1111 1011

2. Convert to decimal.
- 2.1. First convert to hexadecimal.

0110 0011 1111 1011
6 3 F B

- 2.2. Next, convert to decimal.

Hex	Dec.			
6	6	×	16^3	24576
3	3	×	16^2	768
F	15	×	16^1	240
B	11	×	16^0	11
				25595

3. Remember that the number was negative. Thus

1001 1100 0000 0101 = **-25595**

Two's Complement Subtraction

M and S are the minuend and subtrahend respectively and both are in two's complement representation.

1. Define a field width and add M to the two's complement of S . Discard any digits that carry into positions more significant than those defined by the field width. Discard any carry out digits.

Example Find the difference $(1010 - 0111)$.

Find the 2's complement of $S = 0111$.

$$\begin{array}{r}
 0111 \\
 1's \text{ complement of } S \\
 \hline
 1000 \\
 \text{Add 1 to find 2's complement of } S \\
 \hline
 1001 \\
 2's \text{ complement of } S
 \end{array}$$

Add M to the two's complement of S .

$$\begin{array}{r}
 M \quad \quad \quad 1010 \quad \quad \quad 10 \\
 2's \text{ complement of } S \quad \quad +1001 \quad \quad \quad -7 \\
 D = M - S \quad \quad \quad \hline \quad \quad \quad 3 \\
 \text{Final result} \quad \quad \quad 0011 \quad \quad \quad 3
 \end{array}$$

2. Determining the sign.
- 2.1. If the most significant digit is 1, then the number is negative, otherwise it is positive.
3. Finding the magnitude of a two's complement number.
- 3.1. If the number is not negative – that is – if the number has a zero in its most significant bit, then convert it to decimal as we have discussed.

Example: Find the magnitude of the 8-bit, two's complement number 01101001.

1.1. First, convert it to hexadecimal.

$$01101001_2 = 69_{16}$$

1.2. Next, convert it to decimal.

$$69_{16} = 6 \times 16 + 9 = 105$$

- 3.2. If the number is negative – that is – if the number has a one in its most significant bit, then complement the number, convert it to decimal as we have discussed, and **recall** that the number was negative.

Example: Find the magnitude of the 8-bit, two's complement number 10110110.

1. Complement the number
 - 1.1. One's complement 01001001
 - 1.2. Two's complement 01001010
2. Convert the number to decimal
 - 2.1. First, convert it to hexadecimal.

$$01001010_2 = 4A_{16}$$

2.2. Next, convert it to decimal.

$$4A_{16} = 4 \times 16 + 10 = 74$$

3. **Recall** that the number was negative
-74

4. Determining if overflow occurred.

4.1. Overflow occurs when adding two positive numbers, adding two negative numbers, subtracting a positive number from a negative number, or when subtracting a negative number from a positive number. When the magnitude of the result exceeds the range of values that can be represented in the field an overflow has occurred.

Consider a 4-bit two's complement number. The range of values for a 4-bit two complement number is $-8 \leq v \leq 7$. Whenever the result falls outside the range, an overflow has occurred.

Example: Find the sum of 4+5 using 4-bit two's complement numbers.

$$\begin{array}{r}
 & & & 1 \\
 & 4 & & 0 & 1 & 0 & 0 \\
 + & 5 & & + & 0 & 1 & 0 & 1 \\
 \hline
 9 & & & 1 & 0 & 0 & 1 \\
 & & & 0 & 1 & 1 & 0 \\
 & & & + & & & 1 \\
 & & & & & & 0 & 1 & 1 & 1
 \end{array}$$

We observe the sum to be 1001, a negative number in 4-bit two's complement representation. Immediately, we see that a sign inversion has occurred. The sum of two positive numbers is negative. Clearly, this is impossible. Therefore, an overflow has occurred.

4.2. Special case: Overflow in 2's complement numbers. Overflow occurs when the carry into the sign bit is unequal to the carry out.

Example: consider a 4-bit 2's complement number. A number, n , ranges over the interval, $-8 \leq n \leq 7$. Example: Find the sum of -5 and -4.

Decimal	Binary	2's Complement
		CO CI
		1 0
- 5	0 1 0 1	2's comp \rightarrow 1 0 1 1
- 4	0 1 0 0	2's comp \rightarrow + 1 1 0 0
- 9		1 0 1 1 1

In the example above, CI is an abbreviation for Carry In (to the sign bit) and CO means Carry Out (of the sign bit).

Algorithms for Integer Operations

ALGORITHM 2 Addition of Integers

```

procedure add(a,b: positive integers)
{The binary expansions of a and b are  $(a_{n-1}a_{n-2}\cdots a_1a_0)_2$  and  $(b_{n-1}b_{n-2}\cdots b_1b_0)_2$ 
respectively where a and b are both binary numbers.}
c:=0
for j:=0 to n-1
begin
  d := aj + bj + c
  sj := d mod 2
  if d > 1 then c := 1 else c := 0
end
sn = c
{The binary expansion of the sum is  $(s_ns_{n-1}\cdots s_0)_2$ }
```

EXAMPLE 7 Add $a = (1110)_2$ and $b = (1011)_2$

Solution: Follow the procedure specified in algorithm 2

c:=0

<i>j</i> = 0	<i>d</i> := $a_0 + b_0 + c = 0 + 1 + 0 = 1$
	<i>s₀</i> := <i>d</i> mod 2 = 1 mod 2 = <i>s₀</i> = 1
	if <i>d</i> > 1 then <i>c</i> := 1 else <i>c</i> := 0 $\Rightarrow c = 0$
<i>j</i> = 1	<i>d</i> := $a_1 + b_1 + c = 1 + 1 + 0 = 2$
	<i>s₁</i> := <i>d</i> mod 2 = 2 mod 2 = <i>s₁</i> = 0
	if <i>d</i> > 1 then <i>c</i> := 1 else <i>c</i> := 0 $\Rightarrow c = 1$
<i>j</i> = 2	<i>d</i> := $a_2 + b_2 + c = 1 + 0 + 1 = 2$
	<i>s₂</i> := <i>d</i> mod 2 = 2 mod 2 = <i>s₂</i> = 0
	if <i>d</i> > 1 then <i>c</i> := 1 else <i>c</i> := 0 $\Rightarrow c = 1$
<i>j</i> = 3	<i>d</i> := $a_3 + b_3 + c = 1 + 1 + 1 = 3$
	<i>s₃</i> := <i>d</i> mod 2 = 3 mod 2 = <i>s₃</i> = 1
	if <i>d</i> > 1 then <i>c</i> := 1 else <i>c</i> := 0 $\Rightarrow c = 1$
<i>j</i> = 4	<i>s₄</i> = <i>c</i> = 1
	<i>s</i> = 11001

Check

<i>j</i> =	4	3	2	1	0	
Carry	1	1	1	0		14
		1	1	1	0	
		1	0	1	1	+11
25	1	1	0	0	1	25
	16	8				

ALGORITHM 5 Modular Exponentiation

```

procedure modular exponentiation
  (b: integer
  ,n = (nk-1nk-2⋯n1n0)2: positive integer
  ,m: positive integer
  )
  x := 1
  power := b mod m
  for i := 0 to k - 1
  begin
    if ai = 1 then x := (x · power)mod m
    power := (power · power)mod m
  end
  {x = bn mod m}

```

EXAMPLE 11 Use Algorithm 5 to find $3^{644} \bmod 645$.

Solution: Algorithm 5 initially sets $x = 1$ and $power = 3 \bmod 645 = 3$. In the computation of $3^{644} \bmod 645$, this algorithm determines $3^{2^j} \bmod 645$ for $j = 1, 2, \dots, 9$ by successively squaring the and reducing modulo 645. If $a_j = 1$ (where a_j is the bit in the j th position in the binary expansion of 644), it multiplies the current value of x by $3^{2^j} \bmod 645$ and reduces the result modulo 645. Here are the steps used:

<i>i</i>	a_i	<i>x</i>	<i>power</i>
0	0	1	$power = 3^2 \bmod 645 =$ 9 mod 645 = 9
1	0	1	$power = 9^2 \bmod 645 =$ 81 mod 645 = 81
2	1	$(1 \cdot 81) \bmod 645 = 81$	$power = 81^2 \bmod 645 =$ 6521 mod 645 = 111
3	0	81	$power = 111^2 \bmod 645 =$ 12,321 mod 645 = 66
4	0	81	$power = 66^2 \bmod 645 =$ 4356 mod 645 = 486
5	0	81	$power = 486^2 \bmod 645 =$ 236,196 mod 645 = 126
6	0	81	$power = 126^2 \bmod 645 =$ 15,876 mod 645 = 396
7	1	$(81 \cdot 396) \bmod 645 = 471$	$power = 396^2 \bmod 645 =$ 156,816 mod 645 = 81
8	0	471	$power = 81^2 \bmod 645 =$ 6561 mod 645 = 111
9	1	$(471 \cdot 111) \bmod 645 = 36$	

$$3^{644} \bmod 645 = 36$$

Exponentiation by squaring:

$$x^n = \begin{cases} x(x^2)^{\frac{n-1}{2}}, & \text{if } n \text{ is odd} \\ (x^2)^{\frac{n}{2}}, & \text{if } n \text{ is even} \end{cases}$$

Example: $x^7 = x(x^2)^{\frac{7-1}{2}} = x(x^2)^3 = x(x^2)^3 = x(x^{2 \times 3}) = x(x^6) = x^7$

Example: $x^{10} = (x^2)^{\frac{10}{2}} = (x^2)^5 = (x^{2 \times 5}) = x^{10}$

```
double exp_by_squaring(double x,unsigned int n)
{   if (n==0) return 1.0;
    if (n==1) return x;
    if (n%2) return x*exp_by_squaring(x*x,(n-1)/2);
    else return exp_by_squaring(x*x,n/2);
}
```