

Introduction

In this lecture we introduce and explain the three functions that are typically used to characterize the growth of algorithms. $O(f(n))$, or big Oh, is a ceiling saying that the algorithm grows no faster than $f(n)$. $\Omega(g(n))$ is a floor saying that the algorithm grows no slower than $g(n)$. $\Theta(f(n))$ is the defining function for an algorithm. When we can find a ceiling and a floor that employ the same function $f(n)$, we say that the algorithm is $\Theta(f(n))$.

Big-O Notation**DEFINITION 1**

Let T and f be functions from the set of integers or the set of real numbers to the set of real numbers. We say that $T(n)$ is $O(f(n))$ if there are positive constants n_0 and C such that

$$|T(n)| \leq C|f(n)|$$

whenever

$$n > n_0$$

[This is read as “ $T(n)$ is big-oh of $f(n)$.”]

- The constants C and n_0 in the definition of big-O notation are called **witnesses** to the relationship $T(n)$ is $O(f(n))$.
- There are *infinitely many* witnesses to the relationship $T(n)$ is $O(f(n))$.

Finding C , n_0 , and $f(n)$ for $T(n)$

Steps: Assume $T(n) = \frac{3}{2}n^2 + \frac{5}{2}n + 10$

1. Find $f(n)$. Let $f(n)$ be the fastest growing term in $T(n)$ with its coefficient removed.

$$f(n) = n^2$$

2. Find C .

$$2.1. C = C_{min} + \Delta, \text{ where } \Delta = 1 \text{ (in many cases).}$$

$$2.2. C_{min} = \lim_{n \rightarrow \infty} \frac{T(n)}{f(n)} = \lim_{n \rightarrow \infty} \frac{\frac{3}{2}n^2 + \frac{5}{2}n + 10}{n^2} = \frac{3}{2}$$

2.3. In practice, C_{min} is the coefficient of the fastest growing term in $T(n)$.

$$3. C = \Delta + \frac{3}{2} = 1 + \frac{3}{2} = \frac{5}{2}$$

4. Find n_0 .

$$4.1. \text{ Solve } |T(n_0)| \leq C|f(n_0)|$$

$$\begin{aligned} \frac{3}{2}n_0^2 + \frac{5}{2}n_0 + 10 &\leq \frac{5}{2}n_0^2 \\ n_0^2 - \frac{5}{2}n_0 - 10 &\geq 0 \\ n_0 = \left[\frac{5 \pm \sqrt{\left(\frac{5}{2}\right)^2 + 4 \cdot 1 \cdot 10}}{2} \right], n_0 > 0 \\ n_0 = [4.65], n_0 > 0 \\ n_0 = 5 \end{aligned}$$

- 4.2. Choose an integer value for n_0 . Let $n_0 = 5$.

We have shown that $T(n) = \frac{3}{2}n^2 + \frac{5}{2}n + 10$ is $O(n^2)$ because we have found witnesses $C = \frac{5}{2}$ and $n_0 = 5$.

REMARK

As an estimate of the growth of $T(n)$, $O(f(n))$ is a conservative estimate because it places a **ceiling** on the growth $T(n)$. When $n > n_0$, $O(f(n)) \geq T(n)$. Let us call $O(f(n))$, big-O of (n) , the Eeyore estimate because the actual running time of a function, given by $T(n)$ will be **less** than the estimate $Cf(n)$ because Eeyore is a pessimist always promising **less** than he actually delivers.

Seek to emulate Eeyore.

Big- Ω Notation

DEFINITION 2

Let T and f be functions from the set of integers or the set of real numbers to the set of real numbers. We say that $T(n)$ is $\Omega(g(n))$ if there are positive constants n_0 and C such that

$$|T(n)| \geq C|g(n)|$$

whenever

$$n > n_0$$

[This is read as “ $T(n)$ is big-Omega of $g(n)$.”]

Finding C , n_0 , and $f(n)$ for $T(n)$

Steps: Assume $T(n) = \frac{3}{2}n^2 + \frac{5}{2}n - 10$

1. Find $g(n)$. Let $f(n)$ be the fastest growing term in $T(n)$ without its coefficient.

$$f(n) = n^2$$

2. Find C .

$$2.1. C = C_{min} - \Delta, \text{ where } \Delta = 1 \text{ (in many cases).}$$

$$2.2. C_{min} = \lim_{n \rightarrow \infty} \frac{T(n)}{g(n)} = \lim_{n \rightarrow \infty} \frac{\frac{3}{2}n^2 + \frac{5}{2}n - 10}{n^2} = \frac{3}{2}$$

2.3. In practice, C_{min} is the coefficient of the fastest growing term in $T(n)$.

$$2.4. C = \frac{3}{2} - \Delta = \frac{3}{2} - 1 = \frac{1}{2}$$

3. Find n_0 .

$$3.1. \text{ Solve } |T(n_0)| \geq C|g(n_0)|$$

$$\begin{aligned} \frac{3}{2}n_0^2 + \frac{5}{2}n_0 - 10 &\leq \frac{1}{2}n_0^2 \\ n_0^2 + \frac{5}{2}n_0 - 10 &\leq 0 \\ n_0 = \left[\frac{-\frac{5}{2} \mp \sqrt{\left(\frac{5}{2}\right)^2 + 4 \cdot 1 \cdot 10}}{2} \right], n_0 > 0 \\ n_0 = \lfloor 2.15 \rfloor, n_0 > 0 \\ n_0 \geq 2 \end{aligned}$$

3.2. For $n > 0$, $T(n) \geq Cg(n)$. Select $n_0 = 0$.

We have shown that $T(n) = \frac{3}{2}n^2 + \frac{5}{2}n - 10$ is $\Omega(n^2)$ because we have found witnesses $C = \frac{1}{2}$ and $n_0 = 2$.

Figure 2. $T(n)$ is $\Omega(g(n))$

REMARK

As an estimate of the growth of $T(n)$, $\Omega(g(n))$ is an optimistic estimate because it places a **floor** on the growth of $T(n)$. When $n > n_0$, $T(n) \geq \Omega(g(n))$. Let us call $\Omega(g(n))$, big-omega of (n) , the Tigger estimate because the actual running time of a function, given by $T(n)$ will be **greater** than the estimate $Cg(n)$ and Tigger is an optimist always promising **more** than he can deliver.

Big-Θ Notation

DEFINITION 3

Let T and f be functions from the set of integers or the set of real numbers to the set of real numbers. We say that $T(n)$ is $\Theta(f(n))$ if $T(n)$ is $O(f(n))$ and if $T(n)$ is $\Omega(f(n))$. When $T(n)$ is $\Theta(f(n))$, we say that “ T is big-Theta of $f(n)$ and we also say that $T(n)$ is of **order** $f(n)$.

Let us find a function, $T(n)$, that is both $O(f(n))$ and $\Omega(f(n))$.

Figure 3. $T(n)$ is $\Theta(n)$