
Discrete Structures Lecture 18
CMSC 2123 Validating 𝑻𝑻(𝒏𝒏)

1

Introduction
The purpose of this lecture is to demonstrate how the analysis of time complexity values for 𝑇𝑇(𝑛𝑛)
can be validated empirically.

Example 1 Find and verify the time complexity of the code fragment in Figure 1.
 int sum=0;

for (int i=0;i<n;i++) sum++;
 Figure 1. Program for Example 1.
 Solution: First, find an expression for 𝑻𝑻(𝒏𝒏)
 Line Statement Cost
 1 int sum=0; 1
 2 int i=0; 1
 3 while (i<n) {

𝑘𝑘 = � 1 = 𝑛𝑛
𝑛𝑛−1

𝑖𝑖=0

 4 sum++; 𝑘𝑘
 5 i++; 𝑘𝑘
 6 } 1
 Total 𝑇𝑇(𝑛𝑛) = 3𝑘𝑘 + 3
 Total 𝑻𝑻(𝒏𝒏) = 𝟑𝟑𝟑𝟑 + 𝟑𝟑
 Next, create a C++ function that computes 𝑻𝑻(𝒏𝒏) analytically.
 int analytical(int n){return 3*n+3;}
 Next, create a C++ function that computes 𝑻𝑻(𝒏𝒏) empirically.
 int empirical(int n)

{ int c=0;
int sum=0; c++;
int i=0; c++;
while (i<n){ c++;

sum++; c++;
i++; c++;

} c++;
return c;

}

Discrete Structures Lecture 18
CMSC 2123 Validating 𝑻𝑻(𝒏𝒏)

2

 Now, write a program that exercises both functions and prints results
 void title(ostream& o)

{ o << endl;
o << setw(5) << “n”;
o << “ “;
o << setw(15) << “analytical”;
o << “ “;
o << setw(15) << “empirical”;

}
void row(ostream& o,int n,int a,int e)
{ o << endl;

o << setw(5) << n;
o << “ “;
o << setw(15) << a;
o << “ “;
o << setw(15) << e;

}
int main()
{ int n[]={0,1,10,20,30,40,50};

title(cout);
for (int a=0;a<7;a++) row(cout,n[a],analytical(n[a]),empirical(n[a]));
cout << endl;
return 0;

}
 Output
 n analytical empirical

 0 3 3
 1 6 6
 10 33 33
 20 63 63
 30 93 93
 40 123 123
 50 153 153

Discrete Structures Lecture 18
CMSC 2123 Validating 𝑻𝑻(𝒏𝒏)

3

Example 2 Find and verify the time complexity of the code fragment in Figure 2.
 int sum=0;

for (int i=0;i<n;i+=2) sum++;
 Figure 2. Program for Example 2.
 Solution: First, find an expression for 𝑻𝑻(𝒏𝒏)
 Line Statement Cost
 1 int sum=0; 1
 2 int i=0; 1
 3 while (i<n) {

𝑘𝑘 = � 1 = �
𝑛𝑛
2�

𝑛𝑛−1

2𝑖𝑖=0

 4 sum++; 𝑘𝑘
 5 i+=2; 𝑘𝑘
 6 } 1
 Total 𝑇𝑇(𝑛𝑛) = 3𝑘𝑘 + 3
 Total 𝑻𝑻(𝒏𝒏) = 𝟑𝟑 �

𝒏𝒏
𝟐𝟐�

+ 𝟑𝟑

 Next, create a C++ function that computes 𝑻𝑻(𝒏𝒏) analytically.
 int analytical(int n)

{ int k=n/2;
if (n%2) k++;
return 3*k+3;

}
 Next, create a C++ function that computes 𝑻𝑻(𝒏𝒏) empirically.
 int empirical(int n)

{ int c=0;
int sum=0; c++;
int i=0; c++;
while (i<n){ c++;

sum++; c++;
i+=2; c++;

} c++;
return c;

}

Discrete Structures Lecture 18
CMSC 2123 Validating 𝑻𝑻(𝒏𝒏)

4

 Now, write a program that exercises both functions and prints results
 void title(ostream& o)

{ o << endl;
o << setw(5) << “n”;
o << “ “;
o << setw(15) << “analytical”;
o << “ “;
o << setw(15) << “empirical”;

}
void row(ostream& o,int n,int a,int e)
{ o << endl;

o << setw(5) << n;
o << “ “;
o << setw(15) << a;
o << “ “;
o << setw(15) << e;

}
int main()
{ int n[]={0,1,10,11,20,21,30,31,40,41,50,51};

Title(cout);
for (int a=0;a<12;a++) Row(cout,n[a],analytical(n[a]),empirical(n[a]));
return 0;

}
 Output
 n analytical empirical

 0 3 3
 1 6 6
 10 18 18
 11 21 21
 20 33 33
 21 36 36
 30 48 48
 31 51 51
 40 63 63
 41 66 66
 50 78 78
 51 81 81

Discrete Structures Lecture 18
CMSC 2123 Validating 𝑻𝑻(𝒏𝒏)

5

Example 3 Find and verify the time complexity of the code fragment in Figure 1.
 int sum=0;

for (int i=0;i<n;i++)
for (int j=0;j<n;j++)

sum++;
 Figure 3. Program for Example 3.
 Solution: First, find an expression for 𝑻𝑻(𝒏𝒏)
 Line Statement Cost
 1 int sum=0; 1
 2 int i=0; 1
 3 while (i<n) {

𝑎𝑎 = � 1
𝑛𝑛−1

𝑖𝑖=0

 4 int j=0; 𝑎𝑎
 while (j<n) {

𝑏𝑏 = �� 1
𝑛𝑛−1

𝑗𝑗=0

𝑛𝑛−1

𝑖𝑖=0

 5 sum++; 𝑏𝑏
 6 j++; 𝑏𝑏
 7 } 𝑎𝑎
 8 i++; 𝑎𝑎
 9 } 1
 Total 𝑇𝑇(𝑛𝑛) = 4𝑎𝑎 + 3𝑏𝑏 + 3
 𝒂𝒂

𝑎𝑎 = � 1
𝑛𝑛−1

𝑖𝑖=0

= 𝑛𝑛

 𝒃𝒃
𝑏𝑏 = �� 1

𝑛𝑛−1

𝑗𝑗=0

𝑛𝑛−1

𝑖𝑖=0

= �𝑛𝑛 = 𝑛𝑛2
𝑛𝑛−1

𝑖𝑖=0

 Total 𝑻𝑻(𝒏𝒏) = 𝟑𝟑𝒏𝒏𝟐𝟐 + 𝟒𝟒𝟒𝟒 + 𝟑𝟑
 Next, create a C++ function that computes 𝑻𝑻(𝒏𝒏) analytically.
 int analytical(int n)

{ return 3*n*n+4*n+3;
}

 Next, create a C++ function that computes 𝑻𝑻(𝒏𝒏) empirically.
 int empirical(int n)

{ int c=0;
int sum=0; c++;
int i=0; c++;
while (i<n){ c++;

int j=0; c++;
sum++; c++;
j++; c++;

} c++;
i++; c++;

} c++;
return c;

}

Discrete Structures Lecture 18
CMSC 2123 Validating 𝑻𝑻(𝒏𝒏)

6

 Now, write a program that exercises both functions and prints results
 void title(ostream& o)

{ o << endl;
o << setw(5) << “n”;
o << “ “;
o << setw(15) << “analytical”;
o << “ “;
o << setw(15) << “empirical”;

}
void row(ostream& o,int n,int a,int e)
{ o << endl;

o << setw(5) << n;
o << “ “;
o << setw(15) << a;
o << “ “;
o << setw(15) << e;

}
int main()
{ int n[]={0,1,10,20,30,40,50};

Title(cout);
for (int a=0;a<7;a++) Row(cout,n[a],analytical(n[a]),empirical(n[a]));
return 0;

}
 Output

 n analytical empirical
 0 3 3
 1 10 10
 10 343 343
 20 1283 1283
 30 2823 2823
 40 4963 4963
 50 7703 7703

Discrete Structures Lecture 18
CMSC 2123 Validating 𝑻𝑻(𝒏𝒏)

7

Example 4 Find and verify the time complexity of the code fragment in Figure 1.
 int sum=0;

for (int i=0;i<n;i++)
sum++;

for (int j=0;j<n;j++)
sum++;

 Figure 4. Program for Example 4.
 Solution: First, find an expression for 𝑻𝑻(𝒏𝒏)
 Line Statement Cost
 1 int sum=0; 1
 2 int i=0; 1
 3 while (i<n) {

𝑎𝑎 = � 1
𝑛𝑛−1

𝑖𝑖=0

 sum++; 𝑎𝑎
 8 i++; 𝑎𝑎
 9 } 1
 2 int i=0; 1
 3 while (j<n) {

𝑏𝑏 = � 1
𝑛𝑛−1

𝑗𝑗=0

 4 sum++; 𝑏𝑏
 5 j++; 𝑏𝑏
 6 } 1
 Total 𝑇𝑇(𝑛𝑛) = 3𝑎𝑎 + 3𝑏𝑏 + 5
 𝒂𝒂

𝑎𝑎 = � 1
𝑛𝑛−1

𝑖𝑖=0

= 𝑛𝑛

 𝒃𝒃
𝑏𝑏 = � 1

𝑛𝑛−1

𝑖𝑖=0

= 𝑛𝑛

 Total 𝑻𝑻(𝒏𝒏) = 𝟔𝟔𝟔𝟔 + 𝟓𝟓
 Next, create a C++ function that computes 𝑻𝑻(𝒏𝒏) analytically.
 int analytical(int n)

{ return 6*n+5;
}

Discrete Structures Lecture 18
CMSC 2123 Validating 𝑻𝑻(𝒏𝒏)

8

 Next, create a C++ function that computes 𝑻𝑻(𝒏𝒏) empirically.
 int empirical(int n)

{ int c=0;
int sum=0; c++;
int i=0; c++;
while (i<n){ c++;

sum++; c++;
i++; c++;

} c++;
int j=0; c++;
while (j<n){ c++;

sum++; c++;
j++; c++;

} c++;
}

 Now, write a program that exercises both functions and prints results
 void title(ostream& o)

{ o << endl;
o << setw(5) << “n”;
o << “ “;
o << setw(15) << “analytical”;
o << “ “;
o << setw(15) << “empirical”;

}
void row(ostream& o,int n,int a,int e)
{ o << endl;

o << setw(5) << n;
o << “ “;
o << setw(15) << a;
o << “ “;
o << setw(15) << e;

}
int main()
{ int n[]={0,1,10,20,30,40,50};

Title(cout);
for (int a=0;a<7;a++) Row(cout,n[a],analytical(n[a]),empirical(n[a]));
return 0;

}
 Output
 n analytical empirical

 0 5 5
 1 11 11
 10 65 65
 20 125 125
 30 185 185
 40 245 245
 50 305 305

Discrete Structures Lecture 18
CMSC 2123 Validating 𝑻𝑻(𝒏𝒏)

9

Example 5 Find and verify the time complexity of the code fragment in Figure 1.
 int sum=0;

for (int i=0;i<n;i++)
for (j=0;j<n*n;j++)

sum++;
 Figure 5. Program for Example 5.
 Solution: First, find an expression for 𝑻𝑻(𝒏𝒏)
 Line Statement Cost
 1 int sum=0; 1
 2 int i=0; 1
 3 while (i<n) {

𝑎𝑎 = � 1
𝑛𝑛−1

𝑖𝑖=0

 4 int j=0; 𝑎𝑎

𝑏𝑏 = � � 1
𝑛𝑛2−1

𝑗𝑗=0

𝑛𝑛−1

𝑖𝑖=0

 5 while (j<n*n) { 2𝑏𝑏
 6 sum++; 𝑏𝑏
 7 j++; 𝑏𝑏
 8 } 𝑎𝑎
 9 i++; 𝑎𝑎
 10 } 1
 Total 𝑻𝑻(𝒏𝒏) = 𝟒𝟒𝟒𝟒 + 𝟒𝟒𝟒𝟒 + 𝟑𝟑
 𝒂𝒂

𝒂𝒂 = �𝟏𝟏
𝒏𝒏−𝟏𝟏

𝒊𝒊=𝟎𝟎

= 𝒏𝒏

 𝒃𝒃
𝒃𝒃 = � � 𝟏𝟏 =

𝒏𝒏𝟐𝟐−𝟏𝟏

𝒋𝒋=𝟎𝟎

𝒏𝒏−𝟏𝟏

𝒊𝒊=𝟎𝟎

�𝒏𝒏𝟐𝟐 = 𝒏𝒏𝟑𝟑
𝒏𝒏−𝟏𝟏

𝒊𝒊=𝟎𝟎

 Total 𝑻𝑻(𝒏𝒏) = 𝟒𝟒𝒏𝒏𝟑𝟑 + 𝟒𝟒𝟒𝟒 + 𝟑𝟑

 Next, create a C++ function that computes 𝑻𝑻(𝒏𝒏) analytically.
 int analytical(int n)

{ return 4*n*n*n+4*n+3;
}

Discrete Structures Lecture 18
CMSC 2123 Validating 𝑻𝑻(𝒏𝒏)

10

 Next, create a C++ function that computes 𝑻𝑻(𝒏𝒏) empirically.
 int empirical(int n)

{ int c=0;
int sum=0; c++;
int i=0; c++;
while (i<n) { c++;

int j=0; c++;
while (j<n*n) { c+=2;

sum++; c++;
j++; c++;

} c++;
i++; c++;

} c++;
return c;

}
 Now, write a program that exercises both functions and prints results
 void title(ostream& o)

{ o << endl;
o << setw(5) << “n”;
o << “ “;
o << setw(15) << “analytical”;
o << “ “;
o << setw(15) << “empirical”;

}
void row(ostream& o,int n,int a,int e)
{ o << endl;

o << setw(5) << n;
o << “ “;
o << setw(15) << a;
o << “ “;
o << setw(15) << e;

}
int main()
{ int n[]={0,1,10,20,30,40,50};

Title(cout);
for (int a=0;a<7;a++) Row(cout,n[a],analytical(n[a]),empirical(n[a]));
return 0;

}
 Output
 n analytical empirical

 0 3 3
 1 11 11
 10 4043 4043
 20 32083 32083
 30 108123 108123
 40 256163 256163
 50 500203 500203

Discrete Structures Lecture 18
CMSC 2123 Validating 𝑻𝑻(𝒏𝒏)

11

Example 6 Find and verify the time complexity of the code fragment in Figure 1.
 int sum=0;

for (int i=0;i<n;i++)
for (j=0;j<i;j++)

sum++;
 Figure 6. Program for Example 6.
 Solution: First, find an expression for 𝑻𝑻(𝒏𝒏)
 Line Statement Cost
 1 int sum=0; 1
 2 int i=0; 1
 3 while (i<n) {

𝑎𝑎 = � 1
𝑛𝑛−1

𝑖𝑖=0

 4 int j=0; 𝑎𝑎
 5 while (j<i) {

𝑏𝑏 = ��1
𝑖𝑖−1

𝑗𝑗=0

𝑛𝑛−1

𝑖𝑖=0

 6 sum++; 𝑏𝑏
 7 j++; 𝑏𝑏
 8 } 𝑎𝑎
 9 i++; 𝑎𝑎
 10 } 1
 Total 𝑻𝑻(𝒏𝒏) = 𝟑𝟑𝒃𝒃 + 𝟒𝟒𝟒𝟒 + 𝟑𝟑
 𝒂𝒂

𝒂𝒂 = �𝟏𝟏
𝒏𝒏−𝟏𝟏

𝒊𝒊=𝟎𝟎

= 𝒏𝒏

 𝒃𝒃
𝒃𝒃 = ��𝟏𝟏 =

𝒊𝒊−𝟏𝟏

𝒋𝒋=𝟎𝟎

𝒏𝒏−𝟏𝟏

𝒊𝒊=𝟎𝟎

� 𝒊𝒊 =
(𝒏𝒏 − 𝟏𝟏)𝒏𝒏

𝟐𝟐

𝒏𝒏−𝟏𝟏

𝒊𝒊=𝟎𝟎

=
𝟏𝟏
𝟐𝟐
𝒏𝒏𝟐𝟐 −

𝟏𝟏
𝟐𝟐
𝒏𝒏

 Total 𝑻𝑻(𝒏𝒏) =
𝟑𝟑
𝟐𝟐
𝒏𝒏𝟐𝟐 +

𝟓𝟓
𝟐𝟐
𝒏𝒏 + 𝟑𝟑

 Next, create a C++ function that computes 𝑻𝑻(𝒏𝒏) analytically.
 int analytical(int n)

{ return (3*n*n+5*n)/2+3;
}

Discrete Structures Lecture 18
CMSC 2123 Validating 𝑻𝑻(𝒏𝒏)

12

 Next, create a C++ function that computes 𝑻𝑻(𝒏𝒏) empirically.
 int empirical(int n)

{ int c=0;
int sum=0; c++;
int i=0; c++;
while (i<n) { c++;

int j=0; c++;
while (j<i) { c++;

sum++; c++;
j++; c++;

} c++;
i++; c++;

} c++;
return c;

}
 Now, write a program that exercises both functions and prints results
 void title(ostream& o)

{ o << endl;
o << setw(5) << “n”;
o << “ “;
o << setw(15) << “analytical”;
o << “ “;
o << setw(15) << “empirical”;

}
void row(ostream& o,int n,int a,int e)
{ o << endl;

o << setw(5) << n;
o << “ “;
o << setw(15) << a;
o << “ “;
o << setw(15) << e;

}
int main()
{ int n[]={0,1,10,20,30,40,50};

Title(cout);
for (int a=0;a<7;a++) Row(cout,n[a],analytical(n[a]),empirical(n[a]));
return 0;

}
 Output
 n analytical empirical

 0 3 3
 1 7 7
 10 178 178
 20 653 653
 30 1428 1428
 40 2503 2503
 50 3878 3878

Discrete Structures Lecture 18
CMSC 2123 Validating 𝑻𝑻(𝒏𝒏)

13

Example 7 Find and verify the time complexity of the code fragment in Figure 1.
 int sum=0;

while (n>1) {
sum++;
n=n/2;

}
 Figure 7. Program for Example 7.
 Solution: First, find an expression for 𝑻𝑻(𝒏𝒏)
 Line Statement Cost
 1 int sum=0; 1
 2 while (n>1) { 𝑘𝑘
 3 sum++; 𝑘𝑘
 4 n=n/2; 2𝑘𝑘
 5 } 1
 Total 𝑻𝑻(𝒏𝒏) = 𝟒𝟒𝟒𝟒 + 𝟐𝟐
 𝒏𝒏𝒊𝒊+𝟏𝟏 =

𝒏𝒏𝒊𝒊
𝟐𝟐

,𝟎𝟎 < 𝒏𝒏𝒌𝒌 ≤ 𝟏𝟏

 𝒏𝒏𝟎𝟎 = 𝒏𝒏𝒑𝒑 where 𝒑𝒑 signifies parameter. The initial value of n, 𝒏𝒏𝟎𝟎 is
the value of n passed as the parameter of the function.

𝒏𝒏𝟐𝟐 =

𝒏𝒏𝟏𝟏
𝟐𝟐

=
𝒏𝒏𝟎𝟎 𝟐𝟐⁄
𝟐𝟐

=
𝒏𝒏𝟎𝟎
𝟒𝟒

=
𝒏𝒏𝟎𝟎
𝟐𝟐𝟐𝟐

 𝒏𝒏𝒌𝒌 =
𝒏𝒏𝟎𝟎
𝟐𝟐𝒌𝒌

 Also, we know that in the 𝒌𝒌𝒕𝒕𝒕𝒕 iteration, 𝒏𝒏 ≤ 𝟏𝟏, and the loop
terminates.

 Assume 𝒏𝒏𝒌𝒌 = 𝒏𝒏𝟎𝟎
𝟐𝟐𝒌𝒌

= 𝟏𝟏, then 𝒏𝒏𝟎𝟎 = 𝟐𝟐𝒌𝒌 and 𝒌𝒌 = 𝒍𝒍𝒍𝒍𝒍𝒍𝟐𝟐𝒏𝒏𝟎𝟎
 Now 𝒌𝒌 is an integer value and 𝒍𝒍𝒍𝒍𝒍𝒍𝟐𝟐𝒏𝒏𝟎𝟎 does not always produce an

integer value. From the previous lecture we know 𝒌𝒌 = ⌊𝒍𝒍𝒍𝒍𝒍𝒍𝟐𝟐𝒏𝒏𝟎𝟎⌋.
 Total 𝑻𝑻(𝒏𝒏) = 𝟒𝟒⌊𝒍𝒍𝒍𝒍𝒍𝒍𝟐𝟐𝒏𝒏⌋+ 𝟐𝟐
 Next, create a C++ function that computes 𝑻𝑻(𝒏𝒏) analytically.
 int analytical(int n)

{ if (n==0)
return 2;

else
return 4*(int)floor(log2(n))+2;

}

Discrete Structures Lecture 18
CMSC 2123 Validating 𝑻𝑻(𝒏𝒏)

14

 Next, create a C++ function that computes 𝑻𝑻(𝒏𝒏) empirically.
 int empirical(int n)

{ int c=0;
int sum=0; c++;
while (n>1) { c++;

sum++; c++;
n=n/2; c+=2;

} c++;
return c;

}
 Now, write a program that exercises both functions and prints results
 void title(ostream& o)

{ o << endl;
o << setw(5) << “n”;
o << “ “;
o << setw(15) << “analytical”;
o << “ “;
o << setw(15) << “empirical”;

}
void row(ostream& o,int n,int a,int e)
{ o << endl;

o << setw(5) << n;
o << “ “;
o << setw(15) << a;
o << “ “;
o << setw(15) << e;

}
int main()
{ int n[]={0,1,2,4,5,10,20,40,80,160,320,640,1280};

Title(cout);
for (int a=0;a<13;a++) Row(cout,n[a],analytical(n[a]),empirical(n[a]));
return 0;

}
 Output
 n analytical empirical

 0 2 2
 1 2 2
 2 6 6
 4 10 10
 5 10 10
 10 14 14
 20 18 18
 40 22 22
 80 26 26
 160 30 30
 320 34 34
 640 38 38
 1280 42 42

