Discrete Structures Lecture 18
CMSC 2123 Validating T (n)

Introduction
The purpose of this lecture is to demonstrate how the analysis of time complexity values for T'(n)
can be validated empirically.

Example 1 Find and verify the time complexity of the code fragment in Figure 1.
int sum=0;
for (int i=0;i<n;i++) sum++;
Figure 1. Program for Example 1.
Solution: First, find an expression for T (n)

Line Statement Cost
1 int sum=0; 1
2 int j=0; 1

n-1

3 while (i<n) {

R-n

I
]

—_

I

S

i=0
4 sum++; k
5 ++; k
6 } 1
Total T(n) =3k +3
Total T(n)=3n+3

Next, create a C++ function that computes T'(n) analytically.
int analytical(int n){return 3*n+3;}

Next, create a C++ function that computes T'(n) empirically.
int empirical(int n)

{ intc=0;
int sum=0; c++;
int j=0; c++;
while (i<n){ c++;
sum++; c++;
i++; Cc++;
} c++;
return c;
}



Discrete Structures
CMSC 2123

Lecture 18
Validating T (n)

Now, write a program that exercises both functions and prints results
void title(ostream& o)
{ o<<endl
0 << setw( 5) << “n”;
o<
0 << setw(15) << “analytical”;
o<<““
0 << setw(15) << “empirical”;
}
void row(ostream& o,int n,int ag,int e)
{ o<<endl
0 << setw( 5) << n;

o<<““
0 << setw(15) << g;
o<<"“"
0 << setw(15) << e;
}
int main()
{ intn[]={0,1,10,20,30,40,50};
title(cout);
for (int a=0;a<7;a++) row(cout,n[al,analytical(n[al),empirical(n[al));
cout << endl;
return 0;
}
Output
n analytical empirical
0 3 3
1 6 6
10 33 33
20 63 63
30 93 93
40 123 123
50 153 153



Discrete Structures
CMSC 2123

Example 2

Lecture 18
Validating T (n)

Find and verify the time complexity of the code fragment in Figure 2.
int sum=0;

for (int j=0;i<n;i+=2) sum++;

Figure 2. Program for Example 2.

Solution: First, find an expression for T (n)

Line Statement Cost

1 int sum=0; 1

2 int i=0; 1
3 while (i<n) { n-l n
k=17 5]

2i=0

4 sum++; k

5 i+=2; k

6 } 1
Total T(n) =3k +3

Total

n

T(n) = 3 [El +3
Next, create a C++ function that computes T'(n) analytically.
int analytical(int n)
{ intk=n/2;

if (n%2) k++;

return 3*k+3;
}
Next, create a C++ function that computes T'(n) empirically.
int empirical(int n)

{ intc=0;
int sum=0; c++;
int i=0; C++;
while (i<n){ c++;
sum++; Cc++;
+=2; ctHt;
} C++;
return c;
}



Discrete Structures Lecture 18
CMSC 2123 Validating T (n)

Now, write a program that exercises both functions and prints results
void title(ostream& o)
{ o<<endl
0 << setw( 5) << “n”;
o<
0 << setw(15) << “analytical”;
o<<““
0 << setw(15) << “empirical”;
}
void row(ostream& o,int n,int ag,int e)
{ o<<endl
0 << setw( 5) << n;

o<<““
0 << setw(15) << g;
o<<“ "
0 << setw(15) << e;
}
int main()
{ intn[]={0,1,10,11,20,21,30,31,40,41,50,51};
Title(cout);
for (int 0=0;a<12;a++) Row(cout,n[a],analytical(n[al),empirical(n[a]));
return 0;
}
Output
n analytical empirical
0 3 3
1 6 6
10 18 18
11 21 21
20 33 33
21 36 36
30 48 48
31 51 51
40 63 63
41 66 66
50 78 78
51 81 81



Discrete Structures
CMSC 2123

Example 3

Lecture 18
Validating T (n)

Find and verify the time complexity of the code fragment in Figure 1.
int sum=0;
for (int j=0;i<n;i++)
for (int j=0;j<n;j++)
sum++;
Figure 3. Program for Example 3.
Solution: First, find an expression for T (n)

Line Statement Cost
1 int sum=0; 1
2  inti=0; 1
3 while (i<n) { n-1
a= 1
i=0
4 int j=0;
while (j<n) { n-ln-1
b= 2 1
i=0 j=0
5 SUmM++; b
6 jH+; b
7 } a
8 ++; a
9 } 1
Total T(n) =4a+3b+3
a n—1
a= z 1=n
i=0
b n-1n-1 n-1
b= 1= ) n=n?
i=0 j=0 i=0
Total T(n) =3n’+4n+3

Next, create a C++ function that computes T'(n) analytically.
int analytical(int n)

{ return 3*n*n+4*n+3;

}

Next, create a C++ function that computes T'(n) empirically.
int empirical(int n)

{ intc=0;
int sum=0; C++;
int i=0; c++;
while (i<n){ c++;
int j=0; cH4;
sum++; Cc++;
J++; c++;
} C++;
i++; c++;
} Cc++;
returnc;
}



Discrete Structures
CMSC 2123

Lecture 18

Validating T (n)

Now, write a program that exercises both functions and prints results
void title(ostream& o)
{ o<<endl

0 << setw( 5) << “n”;

o << “u ll;
0 << setw(15) << “analytical”;

0 <<

“au,
’

0 << setw(15) << “empirical”;

}

void row(ostream& o,int n,int ag,int e)
{ o<<endl
0 << setw( 5) << n;

0 <<

“u,
’

0 << setw(15) << g;
0 << “u,

’
0 << setw(15) << e;

}
int main()
{ intn[]={0,1,10,20,30,40,50};
Title(cout);
for (int a=0;a<7;a++) Row(cout,n[al,analytical(n[al),empirical(n[a]));
return 0;
}
Output
n analytical empirical
0 3 3
1 10 10
10 343 343
20 1283 1283
30 2823 2823
40 4963 4963
50 7703 7703



Discrete Structures Lecture 18
CMSC 2123 Validating T (n)

Example 4 Find and verify the time complexity of the code fragment in Figure 1.

int sum=0;
for (int j=0;i<n;i++)

sum++;
for (int j=0;j<n;j++)

sum++;

Figure 4. Program for Example 4.
Solution: First, find an expression for T (n)

Line Statement Cost
1 int sum=0; 1
2  inti=0; 1
3 while (i<n) { n-1
a= 1
i=0
sum++; a
8 ++; a
9 } 1
2  inti=0; 1
3 while (j<n){ n-l
b= Z 1
j=0
4 suMm++; b
5 jH+; b
6 } 1
Total T(n)=3a+3b+5
a n-1
a= 1=n
=0
b n-—1
b= 2 1=n
i=0
Total T(n)=6n+5

Next, create a C++ function that computes T'(n) analytically.
int analytical(int n)
{ return 6*n+5;

}



Discrete Structures
CMSC 2123

Lecture 18
Validating T (n)

Next, create a C++ function that computes T (n) empirically.
int empirical(int n)
{ intc=0;

int sum=0;

int i=0;

while (i<n){

}

sum++;
++;

int j=0;
while (j<n){

}
}

SUM++;

J+;

c++;
Ct++;
C++;
c++;
Cc++;
C++;
c++;
C++;
Ct++;
C++;
C++;

Now, write a program that exercises both functions and prints results
void title(ostream& o)
{ o<<endl

0 << setw( 5) << “n”;

o << “" ll;
0 << setw(15) << “analytical”;
o << “" ll;
0 << setw(15) << “empirical”;

}

void row(ostream& o,int n,int ag,int e)
{ o<<endl
0 << setw( 5) << n;

o<<““
0 << setw(15) << g;
o<<““
0 << setw(15) << e;
}
int main()
{ intn[]={0,1,10,20,30,40,50};
Title(cout);
for (int 0=0;a<7;a++) Row(cout,n[al,analytical(n[al),empirical(n[a]));
return 0;
}
Output
n analytical empirical
0 5 5
1 11 11
10 65 65
20 125 125
30 185 185
40 245 245
50 305 305



Discrete Structures
CMSC 2123

Example 5

Lecture 18
Validating T (n)

Find and verify the time complexity of the code fragment in Figure 1.
int sum=0;
for (int j=0;i<n;i++)
for (j=0;j<n*n;j++)
sum++;
Figure 5. Program for Example 5.
Solution: First, find an expression for T (n)

Line Statement Cost

1 int sum=0; 1

2  int/=0; 1

3 while (i<n) { n-1

a= 1

i=0

4 int j=0; a

n-1n?-1

1
g

i=0 j=0
5 while (j<n*n) { b
6 sum++; b
7 J++; b
8 } a
9 ++; a
10 } 1
Total T(n)=4b+ 4a+ 3
a n-1
a= 1=n
i=0
b n-1n2-1 n-1
b= 1=) n?2=nd
i=0 j=0 i=0
Total T(n) =4n3+4n+3

Next, create a C++ function that computes T'(n) analytically.
int analytical(int n)
{ return4*n*n*n+4*n+3;

}



Discrete Structures Lecture 18
CMSC 2123 Validating T (n)

Next, create a C++ function that computes T (n) empirically.
int empirical(int n)

{ intc=0;
int sum=0; C++;
int i=0; C++;
while (i<n) { c++;
int j=0; CctHt;
while (j<n*n) { c+=2;
SuUmM++; c++;
J++; ct++;
} c++;
++; ctH+;
} c++;
return c;
}

Now, write a program that exercises both functions and prints results
void title(ostream& o)
{ o<<endl
0 << setw( 5) << “n”;
o << “" u,
’
0 << setw(15) << “analytical”;
o << “ u,
’
0 << setw(15) << “empirical”;
}
void row(ostream& o,int n,int ag,int e)
{ o<<endl
0 << setw( 5) << n;

o<<““
0 << setw(15) << g;
o<<““
0 << setw(15) << e;
}
int main()
{ intn[]={0,1,10,20,30,40,50};
Title(cout);
for (int 0=0;a<7;a++) Row(cout,n[al,analytical(n[al),empirical(n[a]));
return 0;
}
Output
n analytical empirical
0 3 3
1 11 11
10 4043 4043
20 32083 32083
30 108123 108123
40 256163 256163
50 500203 500203

10



Discrete Structures
CMSC 2123

Example 6

Lecture 18
Validating T (n)

Find and verify the time complexity of the code fragment in Figure 1.
int sum=0;
for (int j=0;i<n;i++)
for (j=0;j<i;j++)
sum++;
Figure 6. Program for Example 6.
Solution: First, find an expression for T (n)

Line Statement Cost
1 int sum=0; 1
2 int /=0; 1
3 while (i<n) { n-1
a= 1
i=0
4 int j=0;
5 while (j<i) { n-1i-1
b= 2 1
i=0 j=0
6 SUmM++; b
7 jH+; b
8 } a
9 ++; a
10 } 1
Total T(n)=3b+4a+3
a n—-1
1=
i=0
b L n-1i-1 . n-1 (n 1)11 1 , 1
i= En —En
i=0 j=0 i=0
Total

3 5
T(n) = —n + = 5 n+3
Next, create a C++ function that computes T'(n) analytically.
int analytical(int n)
{ return (3*n*n+5*n)/2+3;
}

11



Discrete Structures
CMSC 2123

Lecture 18
Validating T (n)

Next, create a C++ function that computes T (n) empirically.
int empirical(int n)
{ intc=0;
int sum=0;
int i=0;
while (i<n) {
int j=0;
while (j<i) {

}

sum++;
J+;

++;

}

return c;

}

c++;
Ct++;
C++;
c++;
C+;
C++;
c++;
Cc++;
C+t;
C++;

Now, write a program that exercises both functions and prints results

void title

(ostream& o)

{ o<<endl
0 << setw( 5) << “n”;
o<<“"“
0 << setw(15) << “analytical”;
o<<“"
0 << setw(15) << “empirical”;
}
void row(ostream& o,int n,int ag,int e)
{ o<<endl
0 << setw( 5) << n;
o<<““
0 << setw(15) << g;
o<<““
0 << setw(15) << e;
}
int main()
{ intn[]={0,1,10,20,30,40,50};
Title(cout);
for (int 0=0;a<7;a++) Row(cout,n[al,analytical(n[al),empirical(n[a]));
return 0;
}
Output
n analytical empirical
0 3 3
1 7 7
10 178 178
20 653 653
30 1428 1428
40 2503 2503
50 3878 3878

12



Discrete Structures
CMSC 2123

Example 7

Lecture 18
Validating T (n)

Find and verify the time complexity of the code fragment in Figure 1.
int sum=0;
while (n>1) {

}

sum++;
n=n/f2;

Figure 7. Program for Example 7.
Solution: First, find an expression for T (n)

Line Statement Cost
1 int sum=0; 1
2 while (n>1) { k
3 sum++; k
4 n=n/f2; 2k
5 } 1
Total T(n) =4k + 2

n.
ni+1=?l,0<nk£1

ny = n, where p signifies parameter. The initial value of n, n, is
the value of n passed as the parameter of the function.
ny ng/2 _my ny
n, =—= = =
272 2 4 22
_ o
=%
Also, we know that in the k" iteration, n < 1, and the loop
terminates.

Assume n = % =1,thenny = 2¥ and k = log,n,

ng

Now k is an integer value and log,n, does not always produce an
integer value. From the previous lecture we know k = |log,ny|.
Total T(n) = 4|log,n| + 2

Next, create a C++ function that computes T'(n) analytically.
int analytical(int n)

{

if (n==0)

return 2;

else

return 4*(int)floor(log2(n))+2;

13



Discrete Structures Lecture 18
CMSC 2123 Validating T (n)

Next, create a C++ function that computes T (n) empirically.
int empirical(int n)

{ intc=0;
int sum=0; c++;
while (n>1) { c++;
sum++; c++;
n=n/f2; c+=2;
} C++;
return c;
}

Now, write a program that exercises both functions and prints results
void title(ostream& o)
{ o<<endl
0 << setw( 5) << “n”;
o << “" u,
’
0 << setw(15) << “analytical”;
0 << “ u,
’
0 << setw(15) << “empirical”;
}
void row(ostream& o,int n,int ag,int e)
{ o<<endl
0 << setw( 5) << n;

o<<“"
0 << setw(15) << g;
o<<““
0 << setw(15) << e;
}
int main()
{ intn[]={0,1,2,4,5,10,20,40,80,160,320,640,1280};
Title(cout);
for (int a=0;a<13;a++) Row(cout,n[a],analytical(n[al),empirical(n[a]));
return 0;
}
Output
n analytical empirical
0 2 2
1 2 2
2 6 6
4 10 10
5 10 10
10 14 14
20 18 18
40 22 22
80 26 26
160 30 30
320 34 34
640 38 38
1280 42 42

14



