Discrete Structures Lecture 17
CMSC 2123 Time Complexity: T(n), Examples

Introduction

The most difficult part of our discussion of time complexity is the computation of T'(n), the timing
function for a code fragment. Once the timing function is known, it is quite easy to characterize the
growth of the algorithm in some simpler and more recognizable function. In this lecture, we will explore
several examples to illustrate our concept of time complexity applied to computer algorithms.

Example 1 Find the time complexity of the code fragment in Figure 1.
void max(int a, int b)
{ if(a>b){
return g;
}else {
return b;
}
}

Figure 1. Program for Example 1.
Solution: Complete the following steps.

1. Create a three column table putting line numbers in the first column,
statements of the program in the second column, and the cost of each
statement in the third column.

2. Sum the cost of the individual statements to find the cost of the program.

Line Statement Cost
1 void max(int g, int b) 0
2 { if(a>b){ 1
3 return g; 0
4 }else { 0
5 return b; 0
6 } 0
7 } 0
Total 1
Explanation:

1. The statement of line 1 was assigned a cost of zero (0) because the
function header is translated to the subprogram prolog and by Time
Complexity Rule 1 subprogram prologs are said to cost nothing.

2. The statement on line 2 was assigned a cost of one (1) because of the
relational operation.

3. The return-statement on line 3 is translated to a subprogram epilog and,
therefore, is assigned a cost of zero (0).

4. There are no operations on line 4 resulting in a cost of zero (0).

5. The return-statement one line 5 is translated to a subprogram epilog and,
therefore, is assigned a cost of zero (0).

6. There are no operations on line 6 resulting in a cost of zero (0).

7. The closing curly brace on line 7 is translated to the subprogram epilog
that has no cost.

The total is one (1).

Discrete Structures
CMSC 2123

Example 2

Lecture 17
Time Complexity: T(n), Examples

Find the time complexity of function findmax in Figure 2 that finds the maximum
value in the array of integers given by the two parameters A and n.

int findmax(int A[], int n)

{ int max=A[0];

for (int i=1;i<n;i++) {
if (A[/1>max) max=A[i];

}

return max;

}
Figure 2. Program for Example 2.
Solution: Complete the following steps.

1. Create a three column table putting line numbers in the first column,
statements of the program in the second column, and the cost of each
statement in the third column.

2. Sum the cost of the individual statements to find the cost of the program.

Line Statement Cost
1 int findmax(int A[], int n) 0
2 { intmax=A[0]; 1
3 int j=1; 1
4 while (i<n) {

n-1
k=21=n—1
i=1

5 if (A[/1>max) max=A[i]; 2k

6 ++; k

7 } 1

8 return max; 0

9 } 0
Total T(n)=4k+3
Total T(n) =4n—-1)+3
Total T(n)=4n-1

Explanation:

1. The statement of line 1 was assigned a cost of zero (0) because the
function header is translated to the subprogram prolog and by Time
Complexity Rule 1 subprogram prologs are said to cost nothing.

2. Only the assignment operation is counted on line 2. The index operation
[1is assigned a cost of zero (0).

3. The assighment operation is assighed a cost of one (1) on line 3.

We transformed the original statement on line 3 in Figure 1 to three
statement is the table above. The for-statement was altered to the
initialization on line 3, the while-test on line 4, and the increment on line
6.

4. Thetestonline 4istruen — 1 times and false 1 time. We account for
the cost of the times the test is executed when it is true on line 4 and the
one time when it is false on line 7.

Discrete Structures Lecture 17
CMSC 2123 Time Complexity: T(n), Examples

Explanation continued.

5. There are two operations on line 5, the relational operation and the
assignment. The relational operation is executed every time the loop
body is executed, n — 1 times. The assignment is only executed when the
relational operation is true. However, for the purpose of computing time
complexity, we assume that the assignment statement is executed every
time the loop body is executed, n — 1 times.

6. The loop variable iis incremented n — 1 times on line 6.

7. We account for the cost of the one time when the loop test on line 4 is
false on line 7.

8. The return-statement on line 8 is translated to a subprogram epilog and,
therefore, is assigned a cost of zero (0).

9. The closing curly brace on line 9 is translated to the subprogram epilog
that has no cost.

The total is T(n) = 4n — 1. This expression can be interpreted to mean that
roughly four operations are required to find the maximum value for every
element in the array.

Example 3 Find the time complexity of function findsum in Figure 3 that exercises a nested
loop.
int findsum(int n)
{ intsum=0;
for (int a=n;a>0;a--) {
for (int b=n;b>a;b--) {
sum++;

}

return sum,

}

Figure 3. Program for Example 3.

Discrete Structures Lecture 17
CMSC 2123 Time Complexity: T(n), Examples

Solution: Complete the following steps.
1. Simplify for-statements
2. Create a three column table putting line numbers in the first column,
statements of the program in the second column, and the cost of each
statement in the third column.
3. Sum the cost of the individual statements to find the cost of the program.

Line Statement Cost
1 int findsum(int n) 0
2 { intsum=0; 1
3 int a=n; 1
4 while (a>0) { “
j= 1=n
a=1
5 int b=n; j
6 while (b>a) { L
k= z Z 1
a=1b=a+1
7 Ssum++; k
8 b--; k
9 }//end b j
10 a--; J)
11 }//end a 1
12 return sum; 0
13}
Total T(n)=3k+4j+3
k n n
k= z z 1
a=1b=a+1
k n n n
k=2(n—a)= n—Za
a=1 a=1 a=1
kNN , na+1) , 1, 1 1, 1
—En—Za—n— > =n —En —En——n —En
a=1 a=1 1 1
Total T(n) = [Enz - En] +4[n]+3

Discrete Structures Lecture 17
CMSC 2123 Time Complexity: T(n), Examples

Explanation:

1. The statement of line 1 was assigned a cost of zero (0) because the
function header is translated to the subprogram prolog and by Time
Complexity Rule 1 subprogram prologs are said to cost nothing.

2. Only the assignment operation is counted on line 2. The index operation
[]1is assigned a cost of zero (0).

3. The assignment operation is assigned a cost of one (1) on line 3.

We transformed the original statement on line 3 in Figure 1 to three
statement is the table above. The for-statement was altered to the
initialization on line 3, the while-test on line 4, and the increment on line
6.

4. Thetestonline 4 istrue n — 1 times and false 1 time. We account for the
cost of the times the test is executed when it is true on line 4 and the one
time when it is false on line 7.

Example 4 Find the time complexity of function Countlterations in Figure 4 that finds the
number of iterations executed by the loop.
void Countlterations(int n)
{ while (n>1) n=n/2;
}
Figure 4. Program for Example 4.
Solution: Complete the following steps.
1. Simplify for-statements
2. Create a three column table putting line numbers in the first column,
statements of the program in the second column, and the cost of each
statement in the third column.
3. Sum the cost of the individual statements to find the cost of the program.

Line Statement Cost
1 void Countinterations(int n) 0
2 { while(n>1){ k
3 n=n/f2; 2k
4 } 1
5 } 0
Total T(n) =3k+2
k n;
ni+1 :?,0 <nk < 1
k ny = n, where p signifies parameter. The initial value of n, n is the
value of n passed as the parameter of the function.
k _np ny/2 my my
=5 n_ 4 22
k ny = 2_’(:

Also, we know that in the kth iteration, n < 1, and the loop terminates.
k Assumen; = ;l—,‘: =1,thenny = 2¥ and k = log,n,
k Now k is an integer value and log,n, does not always produce an
integer value. Therefore, k = [log,n,] or k = |log,ny]. The question

Discrete Structures Lecture 17
CMSC 2123 Time Complexity: T(n), Examples

is which is it? Let us try a few values of n and see if we can find a

pattern.

k n k [log,n] llog,n|
0 0 undefined undefined
1 0 0 0
2 1 1 1
3 1 2 1
4 2 2 2
5 2 3 2
6 2 3 2
7 2 3 2
8 3 3 3
9 3 4 3
10 3 4 3

k Itappears that = |log,n,| and

Total T(n) = 3|log,n| + 2
Example 5 Find the time complexity of function ExponentialCount in Figure 5 that finds the

maximum value in the array of integer given by the two parameters A and n.
void ExponentialCount(int n)
{ intsum=1;
for (int a=0;a<n;a++) sum=sum*2;
while (sum>1) sum--;
}
Figure 5. Program for Example 5.
Solution: Complete the following steps.
1. Simplify for-statements
2. Create a three column table putting line numbers in the first column,
statements of the program in the second column, and the cost of each
statement in the third column.
3. Sum the cost of the individual statements to find the cost of the program.

Line Statement Cost
1 void ExponentialCount(int n) 0
2 { intsum=1; 1
3 int a=0; 1
4 while (a<n) { nl

Jj= Z 1=n

a=o0
5 sum=sum¥*2; 2j
6 a++; j
7 } 1
8 while (sum>0) { k
9 sum--; k
10 } 1
11} 0

Total T(n) =2k+4j+4

Discrete Structures
CMSC 2123

Total

Total

LN WN AW

Lecture 17
Time Complexity: T(n), Examples

T(n)=2k+4n+4
The sum-loop iterates over the values sum down to 1. We can
say that the sum-loop executes sum times.
Since the sum-loop executes sum times, we can say that k and
sum have the same value.
sumgy = 1, sum;, 1 = 2sum;
sum; =2 Xsumyg=2x1=21
sum; =2 X sum; =2 x2 =22
sumg =2 X sum, =2 x4 =23
sum; = 2¢
sum, = 2"
sum=k=2"

Tn)=2-2"+4n+4

