
Discrete Structures Lecture 17
CMSC 2123 Time Complexity: 𝑻𝑻(𝒏𝒏), Examples

1

Introduction
The most difficult part of our discussion of time complexity is the computation of 𝑇𝑇(𝑛𝑛), the timing
function for a code fragment. Once the timing function is known, it is quite easy to characterize the
growth of the algorithm in some simpler and more recognizable function. In this lecture, we will explore
several examples to illustrate our concept of time complexity applied to computer algorithms.

Example 1 Find the time complexity of the code fragment in Figure 1.
 void max(int a, int b)

{ if (a>b) {
return a;

} else {
return b;

}
}

 Figure 1. Program for Example 1.
 Solution: Complete the following steps.

1. Create a three column table putting line numbers in the first column,
statements of the program in the second column, and the cost of each
statement in the third column.

2. Sum the cost of the individual statements to find the cost of the program.
 Line Statement Cost
 1 void max(int a, int b) 0
 2 { if (a>b) { 1
 3 return a; 0
 4 } else { 0
 5 return b; 0
 6 } 0
 7 } 0
 Total 1
 Explanation:

1. The statement of line 1 was assigned a cost of zero (0) because the
function header is translated to the subprogram prolog and by Time
Complexity Rule 1 subprogram prologs are said to cost nothing.

2. The statement on line 2 was assigned a cost of one (1) because of the
relational operation.

3. The return-statement on line 3 is translated to a subprogram epilog and,
therefore, is assigned a cost of zero (0).

4. There are no operations on line 4 resulting in a cost of zero (0).
5. The return-statement one line 5 is translated to a subprogram epilog and,

therefore, is assigned a cost of zero (0).
6. There are no operations on line 6 resulting in a cost of zero (0).
7. The closing curly brace on line 7 is translated to the subprogram epilog

that has no cost.
The total is one (1).

Discrete Structures Lecture 17
CMSC 2123 Time Complexity: 𝑻𝑻(𝒏𝒏), Examples

2

Example 2 Find the time complexity of function findmax in Figure 2 that finds the maximum
value in the array of integers given by the two parameters A and n.

 int findmax(int A[], int n)
{ int max=A[0];

for (int i=1;i<n;i++) {
if (A[i]>max) max=A[i];

}
return max;

}
 Figure 2. Program for Example 2.
 Solution: Complete the following steps.

1. Create a three column table putting line numbers in the first column,
statements of the program in the second column, and the cost of each
statement in the third column.

2. Sum the cost of the individual statements to find the cost of the program.
 Line Statement Cost
 1 int findmax(int A[], int n) 0
 2 { int max=A[0]; 1
 3 int i=1; 1
 4 while (i<n) {

𝑘𝑘 = � 1
𝑛𝑛−1

𝑖𝑖=1

= 𝑛𝑛 − 1

 5 if (A[i]>max) max=A[i]; 2𝑘𝑘
 6 i++; 𝑘𝑘
 7 } 1
 8 return max; 0
 9 } 0
 Total 𝑇𝑇(𝑛𝑛) = 4𝑘𝑘 + 3
 Total 𝑇𝑇(𝑛𝑛) = 4(𝑛𝑛 − 1) + 3
 Total 𝑇𝑇(𝑛𝑛) = 4𝑛𝑛 − 1
 Explanation:

1. The statement of line 1 was assigned a cost of zero (0) because the
function header is translated to the subprogram prolog and by Time
Complexity Rule 1 subprogram prologs are said to cost nothing.

2. Only the assignment operation is counted on line 2. The index operation
[] is assigned a cost of zero (0).

3. The assignment operation is assigned a cost of one (1) on line 3.

We transformed the original statement on line 3 in Figure 1 to three
statement is the table above. The for-statement was altered to the
initialization on line 3, the while-test on line 4, and the increment on line
6.

4. The test on line 4 is true 𝑛𝑛 − 1 times and false 1 time. We account for
the cost of the times the test is executed when it is true on line 4 and the
one time when it is false on line 7.

Discrete Structures Lecture 17
CMSC 2123 Time Complexity: 𝑻𝑻(𝒏𝒏), Examples

3

 Explanation continued.
5. There are two operations on line 5, the relational operation and the

assignment. The relational operation is executed every time the loop
body is executed, 𝑛𝑛 − 1 times. The assignment is only executed when the
relational operation is true. However, for the purpose of computing time
complexity, we assume that the assignment statement is executed every
time the loop body is executed, 𝑛𝑛 − 1 times.

6. The loop variable i is incremented 𝑛𝑛 − 1 times on line 6.
7. We account for the cost of the one time when the loop test on line 4 is

false on line 7.
8. The return-statement on line 8 is translated to a subprogram epilog and,

therefore, is assigned a cost of zero (0).
9. The closing curly brace on line 9 is translated to the subprogram epilog

that has no cost.
The total is 𝑇𝑇(𝑛𝑛) = 4𝑛𝑛 − 1. This expression can be interpreted to mean that
roughly four operations are required to find the maximum value for every
element in the array.

Example 3 Find the time complexity of function findsum in Figure 3 that exercises a nested
loop.

 int findsum(int n)
{ int sum=0;

for (int a=n;a>0;a--) {
for (int b=n;b>a;b--) {

sum++;
}

}
return sum;

}
 Figure 3. Program for Example 3.

Discrete Structures Lecture 17
CMSC 2123 Time Complexity: 𝑻𝑻(𝒏𝒏), Examples

4

 Solution: Complete the following steps.
1. Simplify for-statements
2. Create a three column table putting line numbers in the first column,

statements of the program in the second column, and the cost of each
statement in the third column.

3. Sum the cost of the individual statements to find the cost of the program.
 Line Statement Cost
 1 int findsum(int n) 0
 2 { int sum=0; 1
 3 int a=n; 1
 4 while (a>0) {

𝑗𝑗 = � 1 = 𝑛𝑛
𝑛𝑛

𝑎𝑎=1

 5 int b=n; 𝑗𝑗
 6 while (b>a) {

𝑘𝑘 = � � 1
𝑛𝑛

𝑏𝑏=𝑎𝑎+1

𝑛𝑛

𝑎𝑎=1

 7 sum++; 𝑘𝑘
 8 b--; 𝑘𝑘
 9 }//end b 𝑗𝑗
 10 a--; 𝑗𝑗
 11 }//end a 1
 12 return sum; 0
 13 }
 Total 𝑇𝑇(𝑛𝑛) = 3𝑘𝑘 + 4𝑗𝑗 + 3
 𝑘𝑘

𝑘𝑘 = � � 1
𝑛𝑛

𝑏𝑏=𝑎𝑎+1

𝑛𝑛

𝑎𝑎=1

 𝑘𝑘
𝑘𝑘 = �(𝑛𝑛 − 𝑎𝑎) = �𝑛𝑛

𝑛𝑛

𝑎𝑎=1

−�𝑎𝑎
𝑛𝑛

𝑎𝑎=1

𝑛𝑛

𝑎𝑎=1

 𝑘𝑘
𝑘𝑘 = �𝑛𝑛

𝑛𝑛

𝑎𝑎=1

−�𝑎𝑎
𝑛𝑛

𝑎𝑎=1

= 𝑛𝑛2 −
𝑛𝑛(𝑛𝑛 + 1)

2
= 𝑛𝑛2 −

1
2
𝑛𝑛2 −

1
2
𝑛𝑛 =

1
2
𝑛𝑛2 −

1
2
𝑛𝑛

 Total 𝑻𝑻(𝒏𝒏) = 𝟑𝟑 �
1
2
𝑛𝑛2 −

1
2
𝑛𝑛� + 𝟒𝟒[𝒏𝒏] + 𝟑𝟑

 Total 𝑻𝑻(𝒏𝒏) =
𝟑𝟑
𝟐𝟐
𝑛𝑛2 +

𝟓𝟓
𝟐𝟐
𝒏𝒏 + 𝟑𝟑

Discrete Structures Lecture 17
CMSC 2123 Time Complexity: 𝑻𝑻(𝒏𝒏), Examples

5

 Explanation:
1. The statement of line 1 was assigned a cost of zero (0) because the

function header is translated to the subprogram prolog and by Time
Complexity Rule 1 subprogram prologs are said to cost nothing.

2. Only the assignment operation is counted on line 2. The index operation
[] is assigned a cost of zero (0).

3. The assignment operation is assigned a cost of one (1) on line 3.

We transformed the original statement on line 3 in Figure 1 to three
statement is the table above. The for-statement was altered to the
initialization on line 3, the while-test on line 4, and the increment on line
6.

4. The test on line 4 is true 𝑛𝑛 − 1 times and false 1 time. We account for the
cost of the times the test is executed when it is true on line 4 and the one
time when it is false on line 7.

Example 4 Find the time complexity of function CountIterations in Figure 4 that finds the
number of iterations executed by the loop.

 void CountIterations(int n)
{ while (n>1) n=n/2;
}

 Figure 4. Program for Example 4.
 Solution: Complete the following steps.

1. Simplify for-statements
2. Create a three column table putting line numbers in the first column,

statements of the program in the second column, and the cost of each
statement in the third column.

3. Sum the cost of the individual statements to find the cost of the program.
 Line Statement Cost
 1 void CountInterations(int n) 0
 2 { while(n>1) { 𝑘𝑘
 3 n=n/2; 2𝑘𝑘
 4 } 1
 5 } 0
 Total 𝑻𝑻(𝒏𝒏) = 𝟑𝟑𝟑𝟑 + 𝟐𝟐
 𝒌𝒌 𝒏𝒏𝒊𝒊+𝟏𝟏 =

𝒏𝒏𝒊𝒊
𝟐𝟐

,𝟎𝟎 < 𝒏𝒏𝒌𝒌 ≤ 𝟏𝟏

 𝒌𝒌 𝒏𝒏𝟎𝟎 = 𝒏𝒏𝒑𝒑 where 𝒑𝒑 signifies parameter. The initial value of n, 𝒏𝒏𝟎𝟎 is the
value of n passed as the parameter of the function.

 𝒌𝒌
𝒏𝒏𝟐𝟐 =

𝒏𝒏𝟏𝟏
𝟐𝟐

=
𝒏𝒏𝟎𝟎 𝟐𝟐⁄
𝟐𝟐

=
𝒏𝒏𝟎𝟎
𝟒𝟒

=
𝒏𝒏𝟎𝟎
𝟐𝟐𝟐𝟐

 𝒌𝒌 𝒏𝒏𝒌𝒌 =
𝒏𝒏𝟎𝟎
𝟐𝟐𝒌𝒌

 Also, we know that in the 𝒌𝒌𝒕𝒕𝒕𝒕 iteration, 𝒏𝒏 ≤ 𝟏𝟏, and the loop terminates.
 𝒌𝒌 Assume 𝒏𝒏𝒌𝒌 = 𝒏𝒏𝟎𝟎

𝟐𝟐𝒌𝒌
= 𝟏𝟏, then 𝒏𝒏𝟎𝟎 = 𝟐𝟐𝒌𝒌 and 𝒌𝒌 = 𝒍𝒍𝒍𝒍𝒍𝒍𝟐𝟐𝒏𝒏𝟎𝟎

 𝒌𝒌 Now 𝒌𝒌 is an integer value and 𝒍𝒍𝒍𝒍𝒍𝒍𝟐𝟐𝒏𝒏𝟎𝟎 does not always produce an
integer value. Therefore, 𝒌𝒌 = ⌈𝒍𝒍𝒍𝒍𝒍𝒍𝟐𝟐𝒏𝒏𝟎𝟎⌉ or 𝒌𝒌 = ⌊𝒍𝒍𝒍𝒍𝒍𝒍𝟐𝟐𝒏𝒏𝟎𝟎⌋. The question

Discrete Structures Lecture 17
CMSC 2123 Time Complexity: 𝑻𝑻(𝒏𝒏), Examples

6

is which is it? Let us try a few values of 𝒏𝒏 and see if we can find a
pattern.

 𝒌𝒌 𝒏𝒏 𝒌𝒌 ⌈𝒍𝒍𝒍𝒍𝒍𝒍𝟐𝟐𝒏𝒏⌉ ⌊𝒍𝒍𝒍𝒍𝒍𝒍𝟐𝟐𝒏𝒏⌋
 0 0 undefined undefined
 1 0 0 0
 2 1 1 1
 3 1 2 1
 4 2 2 2
 5 2 3 2
 6 2 3 2
 7 2 3 2
 8 3 3 3
 9 3 4 3
 10 3 4 3
 𝒌𝒌 It appears that = ⌊𝒍𝒍𝒍𝒍𝒍𝒍𝟐𝟐𝒏𝒏𝟎𝟎⌋ and
 Total 𝑻𝑻(𝒏𝒏) = 𝟑𝟑⌊𝒍𝒍𝒍𝒍𝒍𝒍𝟐𝟐𝒏𝒏⌋+ 𝟐𝟐

Example 5 Find the time complexity of function ExponentialCount in Figure 5 that finds the
maximum value in the array of integer given by the two parameters A and n.

 void ExponentialCount(int n)
{ int sum=1;

for (int a=0;a<n;a++) sum=sum*2;
while (sum>1) sum--;

}
 Figure 5. Program for Example 5.
 Solution: Complete the following steps.

1. Simplify for-statements
2. Create a three column table putting line numbers in the first column,

statements of the program in the second column, and the cost of each
statement in the third column.

3. Sum the cost of the individual statements to find the cost of the program.
 Line Statement Cost
 1 void ExponentialCount(int n) 0
 2 { int sum=1; 1
 3 int a=0; 1
 4 while (a<n) {

𝑗𝑗 = � 1
𝑛𝑛−1

𝑎𝑎=0

= 𝑛𝑛

 5 sum=sum*2; 2𝑗𝑗
 6 a++; 𝑗𝑗
 7 } 1
 8 while (sum>0) { 𝑘𝑘
 9 sum--; 𝑘𝑘
 10 } 1
 11 } 0
 Total 𝑻𝑻(𝒏𝒏) = 𝟐𝟐𝟐𝟐 + 𝟒𝟒𝟒𝟒 + 𝟒𝟒

Discrete Structures Lecture 17
CMSC 2123 Time Complexity: 𝑻𝑻(𝒏𝒏), Examples

7

 Total 𝑻𝑻(𝒏𝒏) = 𝟐𝟐𝟐𝟐 + 𝟒𝟒𝟒𝟒 + 𝟒𝟒
 𝒌𝒌 1. The sum-loop iterates over the values sum down to 1. We can

say that the sum-loop executes sum times.
2. Since the sum-loop executes sum times, we can say that 𝒌𝒌 and

sum have the same value.
3. 𝒔𝒔𝒔𝒔𝒔𝒔𝟎𝟎 = 𝟏𝟏, 𝒔𝒔𝒔𝒔𝒔𝒔𝒊𝒊+𝟏𝟏 = 𝟐𝟐𝒔𝒔𝒔𝒔𝒔𝒔𝒊𝒊
4. 𝒔𝒔𝒔𝒔𝒔𝒔𝟏𝟏 = 𝟐𝟐 × 𝒔𝒔𝒔𝒔𝒔𝒔𝟎𝟎 = 𝟐𝟐 × 𝟏𝟏 = 𝟐𝟐𝟏𝟏
5. 𝒔𝒔𝒔𝒔𝒔𝒔𝟐𝟐 = 𝟐𝟐 × 𝒔𝒔𝒔𝒔𝒔𝒔𝟏𝟏 = 𝟐𝟐 × 𝟐𝟐 = 𝟐𝟐𝟐𝟐
6. 𝒔𝒔𝒔𝒔𝒔𝒔𝟑𝟑 = 𝟐𝟐 × 𝒔𝒔𝒔𝒔𝒔𝒔𝟐𝟐 = 𝟐𝟐 × 𝟒𝟒 = 𝟐𝟐𝟑𝟑
7. 𝒔𝒔𝒔𝒔𝒔𝒔𝒊𝒊 = 𝟐𝟐𝒊𝒊
8. 𝒔𝒔𝒔𝒔𝒔𝒔𝒏𝒏 = 𝟐𝟐𝒏𝒏
9. 𝒔𝒔𝒔𝒔𝒔𝒔 = 𝒌𝒌 = 𝟐𝟐𝒏𝒏

 Total 𝑻𝑻(𝒏𝒏) = 𝟐𝟐 ∙ 𝟐𝟐𝒏𝒏 + 𝟒𝟒𝟒𝟒 + 𝟒𝟒

