Discrete Structures Lecture 15

CMmSC 2123

Introduction

2.4 Sequences and Summations

Good morning. In this section we study sequences. A sequence is an ordered list of elements.
Sequences are important to computing because of the iterative nature of computer programs.
The time complexity of recursive functions and for-loops are computed by means of sequences

and summations.

Sequences

DEFINITION 1

EXAMPLE 1

DEFINITION 2

Remark:

EXAMPLE 2.1

EXAMPLE 2.2

EXAMPLE 2.3

A sequence is a function from a subset of the set of integers (usually either
the set {0,1,2---} or the set {1,2,3:--}) to a set S. We use the notation a,, to
denote the image of the integer n. We call a,, a term of the sequence.

We use the notation {a,} to describe the sequence.

Consider the sequence {a,}, where

1
an = —
" on
List the first four terms of the sequence denoted a4, a,, as, a,
. 111
Solution: 1,=,=,-
2’3’4

A geometric progression is a sequence of the form

a,ar,ar?, -, ar™, .-

where the initial term a and the common ratio r are real numbers.

A geometric progression is a discrete analogue of the exponential
function f(x) = ar*.

Consider the sequence {b,,}, where

b, = (="
List the first four terms of the sequence denoted b, b4, b, b3
Solution: by =1,by = —1,b, =1,b3 = -1

Consider the sequence {c,}, where

c,=2-5"
List the first four terms of the sequence denoted ¢y, ¢4, €3, C3
Solution: ¢y =2,¢4 = 10,c, = 50,¢3 = 250

Consider the sequence {b,,}, where

1 n
b =6-3)
List the first four terms of the sequence denoted b, b4, b, b3
Solution: bg = 6,b; = 2,b, = g,b3 =§
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DEFINITION 3 An arithmetic progression is a sequence of the form
a,at+d,a+2d,:--,a+nd,-
where the initial term a and the common difference d are real numbers.
Remark: An arithmetic progression is a discrete analogue of the linear function f(x) =

dx + a.

EXAMPLE 3.1  Consider the sequence {s,,}, where

Sp,=—1+4n
List the first four terms of the sequence denoted sy, 51, 52, 53
Solution: sy =—1,51 =3,5,=7,53 =11

EXAMPLE 3.2  Consider the sequence {t, }, where
t,=7-3n
List the first four terms of the sequence denoted ¢, t4, t,, t3
Solution: ty=7,t1 =4,t, =1,t3 = -2

EXAMPLE 4 The string abcd is a string of length four.
Recurrence Relations

Another way to specify a sequence to provide one or more initial terms together with a rule for
determining subsequent terms from those that precede them.

DEFINITION 4 A recurrence relation for the sequence {a,} is an equation that expresses a,
in terms of one or more of the previous terms of the sequence,
namely, ag , a4, ...,a,—1, for all integers n with n > ny, where ny is a
nonnegative integer. A sequence is called a solution of a recurrence relation
if its terms satisfy the recurrence relation. (A recurrence relation is said to
recursively define a sequence. We will explain this alternative terminology in
Chapter 5.)
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EXAMPLE 5

EXAMPLE 6

DEFINITION 5

Lecture 15
2.4 Sequences and Summations

Let {a,} be a sequence that satisfies the recurrence relation a,, = a,,_; + 3
forn = 1,2,3, ..., and suppose that a; = 2. What are a;, a,,and az?

Solution: We see from the recurrence relation thata; = ap+3=2+3 =
5. It then follows thata, =a; +3=5+3=8and a3 =8+3 =11

Excel is an ideal tool for solving these kinds of exercises. Please review the
excerpted worksheet below.

i afi] Value
0 a[0] 2
1 a[1] 5
2 a[2] 8
3 a[3] 11
4 a[4] 14

Let {a,} be a sequence that satisfies the recurrence relation a, = a,_; —
a,_, forn=2,34,.. , and suppose that ay =3 and a; =5 What
are a,,and a3”?

Solution: We see from the recurrence relation thata, =a; —aqy;=5—-3 =
2. It then follows thata; =2 —5 = —3. We can find a4, as, and each
successive term in a similar way as shown below.

i ali] Value
0 a[0] 3
1 a[1] 5
2 a[2] 2
3 a[3] -3
4 a[4] -5

The Fibonacci sequence, f, f1, f2, - is defined by the initial conditions f, =
0, f1 = 1, and the recurrence relation

fao = fo-1+ faz

forn=2,3,4,... .
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EXAMPLE 7

EXAMPLE 8

EXAMPLE 9.1

2.4 Sequences and Summations

Find the Fibonacci numbers f,, f3, fa, f5, and fg.

Solution: The recurrence relation for the Fibonacci sequence tells us that we
find successive terms by adding the previoius two terms. Because the initial
conditions tell us that f; = 0 and f; = 1, using the recurrence relation in the
definition we find that

Lh=Hh+tfi=1+0=1
i=fh+tfi=1+1=2
fa=f3+f,=2+1=3
fs=fat+fz=3+2=5
fo=fs+fa=5+3=8

As in our previous recurrence relations, we can employ Excel to find the values
of the desired terms

i fli] Value
0 flo] 0
1 fl1] 1
2 f2] 1
3 fI3] 2
4 fl4] 3
5 fI5] 5
6 fl6] 8
7 fl7] 13
8 fl8] 21

Suppose that {a,}is a sequence of integers defined by a,, = n!, the value of
the factorial function at the integern, where n =1,2,3,.... Because n! =
nn—-—1)n-2)..2-1=n(n-1)! =na,_,, we see that the sequence of
factorials satisfies the recurrence relation a,, = na,_4, together with the
initial condition a; = 1.

Determine whether the sequence{a,}, where a,, =3n for every
nonnegative integer n, is a solution of the recurrence relation a,, = 2a,,_1 —
a,_,forn=23,4,...

Solution: Suppose that a, = 3n for every nonnegative integern. Then,
forn >2, we see that2a,; —a,, =2(3(n—-1)-3(n—-2)=3n=
a,. Therefore, {a,}, where a,, = 3n, is a solution of the recurrence relation.
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EXAMPLE 9.2

EXAMPLE 9.3

EXAMPLE 10

2.4 Sequences and Summations

Determine whether the sequence{a,}, where a, =2" for every
nonnegative integer n, is a solution of the recurrence relation a,, = 2a,,_1 —
an_,forn=23,4,...

Solution: Suppose that a,, = 2™ for every nonnegative integer n. Note that
ap=1,a; = 2,anda, = 4. Because2a; —ay =2'2—1=3 # a,,wesee
that {a,}, where a,, = 2", is not a solution of the recurrence relation.

Determine whether the sequence {a,}, where a, = 5 for every nonnegative
integer n, is a solution of the recurrence relation a,, = 2a,,_1 — a,_, forn =
2,3,4,..

Solution: Suppose that a,, = 5 for every nonnegative integer n. Then, forn >
2, we see that 2a,,_y —a,_, =2'5—5=5 = a,. Therefore, {a,}, where
a, = 5, is a solution of the recurrence relation.

Solve the recurrence relation and initial condition in Example 5.
Solution: Recall the recurrence relation in Example 5.

a, = ay_1 + 3forn =273,4,..., and suppose that a; = 2.

We can successively apply the recurrence relation in Example 5, starting with
the initial condition a; = 2, and working upward until we reach a,, to deduce
a closed formula for the sequence. We see that

a2=2+3
a;=Q2+3)+3=2+3-2
a,=(Q2+2-3)+3=2+3-3

an=ap1+3=(243-(n-2))+3=2+3(n-1)

We can also successively apply the recurrence relation in Example 5, starting
with the term a,, and working downward until we reach the initial condition
a; = 2 to deduce this same formula. The steps are:

ap = Qap-1+3
(ap+3)+3=a,_,+3-2
(ap3+3)+3-2=a, 3+3-3
(ap-4+3)+3-3=a,.4+4-3

= 4 +3-2)= (0 +3)+3(—2)=2+3(n—1)
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EXAMPLE 11 Compound Interest Suppose that a person deposits $10,000 in a savings
account at a bank yielding 11% per year with interest compounded annually.
How much will be in the account after 30 years?
Solution: To solve this problem, let P, denote the amount in the account after
n years. Because the amount in the account after n years equals the amount
in the account after n — 1 years plus interest for the nth year, we see that the
sequence {P,} satisfies the recurrence relation

P, =P, 4+011P,_; = (1.11)P,_;.
The initial condition is P, = 10,000.
We can use an iterative approach to find a formula for P,,. Note that
Pl == (1.11)P0
P, = (1.11)P; = (1.11)2P,
P; = (1.11)P, = (1.11)3P,
P, = (1.11)P,_; = (1.11)"P,
When we insert the initial condition Py, = 10,000, the formula P,

(1.11)™*P, is obtained. Inserting n =30 into the formula B,
(1.11)™10,000 shows that after 30 years the account contains

P30 = (1.11)3910,000 = $228,922.97.

Special Integer Sequences

Questions for identifying the algebraic representation for a sequence of numeric terms:

e Are there runs of the same value? That is, does the same value occur many times in a
row?

e Are terms obtained from previous terms by adding the same amount or an amount that
depends on the position in the sequence?

e Are terms obtained from previous terms by multiplying by a particular amount?

e Are terms obtained by combining previous terms in a certain way?

e Are there cycles among terms?

EXAMPLE 12.1 Find a formula for the sequence whose first five terms are:
1 1111
'2'4’8°16
Solution: We recognize an exponential sequence where powers of 2 appear
in the denominators 2, 4, 8, and 16. Hence, the sequence is a geometric

. . 1
progression witha = 1landr = b
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EXAMPLE 12.2

EXAMPLE 12.3

EXAMPLE 13

2.4 Sequences and Summations

2

Recall that a geometric progression has the form a, ar, ar<, -, ar™, ---. In this

case:

e aqy=ar’= -(—)0=1

a2
wmwten ()
wmaten ()
. a4=ar4=1-(%)4=%

Find a formula for the sequence whose first five terms are:
1,3,5,7,9
Solution: We recognize a common difference between terms. The difference
is two (2). Recalling that the form of an arithmetic progressionisa,a + d,a +
2d,:--,a+nd, wecanseethata =1andd = 2.
a=a=1
ag=a+d=1+2=3
a,=a+2d=1+2-2=5
az;=a+3d=1+4+3-2=7
a,=a+4d=14+4-2=9

Find a formula for the sequence whose first five terms are:

1,-1,1,-1,1
Solution: We recognize an exponential sequence where powers of -1 are the
terms of the sequence. Odd powers of -1 produce -1 and even powers of -1
produce 1. Hence, the sequence is a geometric progression with a =
landr = —1.

Recall that a geometric progression has the form a, ar, ar?, .-+, ar™, ---. Inthis
case:

apg=ar’=1-(-1)=1

a,=art=1-(-1)t=-1

a,=ar’=1-(-1)%?=1

a;=ar®=1-(-1)3=-1

a,=ar*=1-(-D*=1

How can we produce the terms of a sequence if the first 10 terms are
1,2,2,3,3,3,4,4,4,4

Solution: In this sequence, the integer 1 appears once, the integer 2 appears
twice, the integer 3 appears three times, and the integer 4 appears four times.
A reasonable rule for generating this sequence is that the integer n appears
exactly n times, so the next five terms of the sequence would all be 5, the
following six terms would all be 6, and so on. The sequence generated this
way is a possible match.
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EXAMPLE 14

EXAMPLE 15

2.4 Sequences and Summations

How can we produce the terms of a sequence if the first 10 terms are
5,11,17,23,29,35,41,47,53,59

Solution: We need to speculate. Is this an arithmetic progression? Is this a

geometric progression? Is this a combination of an arithmetic and geometric

progression? Let us guess that the progression is arithmetic and employ the

table below to discover the pattern of the sequence.

1. Find the difference between successive terms of the sequence.

t ai+1 a; Aiv1 — a;
0 11 5 6
1 17 11 6
2 23 17 6
3 29 23 6

We see that this is an arithmetic progression where d =6 anda =5. q,, =
5+46n,forn=0,1,2,...

How can we produce the terms of a sequence if the first 10 terms are
1,3,4,7,11,18,29,47,76,123

Solution: Observe that each successive term of this sequence, starting with
the third term, is the sum of the two previous terms. Thatis, 4 =3+4+1,7 =
4+ 3,11 =7+ 4, and so on. Consequently, if L, is the nth term in the
sequence, we guess that the sequence is determined by the recurrence
relation L, =L, 1 + L,_, with initial conditionsL; = 1and L, = 3 (the
same recurrence relation as the Fibonacci sequence, but with different initial
conditions). This sequence is known as the Lucas sequence, after the French
mathematician Francois Edouard Lucas. Lucas studied this sequence and the
Fibonacci sequence in the nineteenth century.
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EXAMPLE 16 Find a formula for the sequence whose first few terms are:
1,7,25,79,241,727,2185,6559,19681,59047

Lecture 15

2.4 Sequences and Summations

Solution:
1. Find the difference between successive terms of the sequence.
i Qg a; iy —Q;
0 7 1 6
1 25 7 18
2 79 25 54
3 241 79 162
2. Find a common factor in the differences
i a1 —Q; Common Remaining
Factor Factor
0 6 2 3
1 18 2 9
2 54 2 27
3 162 2 81
3. Find a pattern in the remaining factors.
i a1 —Q; Common Remaining
Factor Factor
0 6 2 3 =31
1 18 2 9 =32
2 54 2 27 =33
3 162 2 81 = 3*

4. Propose a geometric progression

a,=3"-2,n=1,2,3,

5. Test the geometric progression
a,=3'-2=1
a,=32-2=7
a;=33-2=25
a,=3*-2=179
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Summations

DEFINITION 3.1 Summation notation is used to express the sum of a sequence {a,} and any
one of the following forms may be used.
n

Z A =am + iy + 0+ ay
j=m
n
z' A = p + Qpyq + 0+ Ay
j=m
or

Z g =aptapygtootay
msjsn

Here, the index of the summation runs through all integers starting with its
lower limit m and ending with its upper limit n. A large uppercase Greek

letter sigma, 2, is used to denote summation.

EXAMPLE 17 Use summation notation to express the sum of the first 100 terms of the
sequence {aj}, where aj = 1/jforj=1,2,3,...

Solution:
100
j=1

~.| =

EXAMPLE 18 What is the value of ¥5_, j2?
Solution: We have

5
ij=12+22+32+42+52
j=1

=14+4+9+16+25

=55
or from the formula

i 7 = nn+1)(2n+1)
k=1 6

5
5(5+1)(2-5+1) _5-6-11
Zk2=( )(6 )_ =55

=
Il
[y

10
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EXAMPLE 19  What is the value of ¥5_,(—1)*?
Solution: We have

8
DD = (D (D + (D (1) + (-
k=4

=1+(-D+1+(-D+1
=1

EXAMPLE 20 Suppose we have the sum

5
2
j=1
but want the index of summation to run between 0 and 4 rather than from 1
to 5. To do this, we let k = j — 1. Then the new summation index runs from
0 (because k =1—1=0 when j =1) to 4 (because k =5 —1 =4 when
j =5), and the term j2 becomes (k + 1)2. Hence,

It is easily checked that both sumsare1+4+9+4 16 + 25 =55

THEOREM 1 If a and r are real numbers and r # 0, then
n arn+1 _

. a 1
Zarl: T ifr=#1
j=0 n+1Da ifr=1

11
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4 3
N
Solution:

1. First evaluate the inner sum and find a function f (i) where i is the
index of the outer sum. In other words, eliminate both the inner
summation and the inner index variable.

221]—2(1+2l+3l)—26l

i=1j=
2. Next evaluate the outer sum.

4 4
Nei=6) =612 =60
L= 2 =

i=1 i=1

EXAMPLE 21 Evaluate the double sum

TABLE 2 Some Useful Summation Formulae.
Sum Closed Form
n arn+1 —a
Zark(rth) ——7 T *D
k=0
n nn+1)
X 2
k=1
n nn+1)2n+1)
PN 6
krzll 5
2 3 [n(n + 1)]
2
k=1
© 1
xk,|x] <1 1—x
® - 1
Z kxk1 x| < 1 (1 - x)2
EXAMPLE 23 Evaluate
100
k2
k=50
Solution:
1 TRk = T K2 52, k2

n(n+ 1)(2n+ 1)

2 ;clzl k2 —
3. YA k2 = 100D _ 338350

4. T4 k2= m = 40,425

5. Y100 k2= y100 j2 549 k2 — 338350 — 40,425 = 297,925

12
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17.

Find these terms of the sequence {a,,}, where a, = 2 - (—=3)" + 5"

Solution:
Part | a; Expression Final Value
a) | ag ag=2-(-3)°+5° 3
b) | a4 a; =2-(=3)t +5? -1
o) | a4 a,=2-(-3)*+5* 787
d | as as =2-(-3)° +5° 2,639

Find the first five terms of the sequence defined by each of these recurrence relations and
initial conditions.

Solution:
Part a, ag a, a, as a,
a) a, =6a,_,,a9 =2 2 12 72 432 2592
a a; as a, as
b) a,=a’_ja,=2 2 4 16 256 | 65536
Ao a a; as a,
<) a, =ay1+3a,;
ag=1a, =2 1 2 5 11 26
d) a, =na,_; +na,_,
a,=1a;=1 1 1 6 27 204
e) ap, = Aan_q + a3
a=1a,=2,a,=0 1 2 0 1 3

Find the solution to each of these recurrence relations with the given initial conditions. Use
an iterative approach such as that used in Example 10.
a) a, =3a,-1,a9 =2
Solution:
a; = 3a0 =3-2
a,=3a;,=3-3-2=3%2-2
a;=3a,=3-32-2=33-2
a,=3a, ,=3-3"1-2=3"-2
b) a,=a,_1+2,ap=3
Solution:
a; = ay +2=3+4+2
a,=a;+2=34+24+2=3+2-2
az=a,+2=3+2-2+2=3+3-2

a,=a, 1+2=3+(n—-1)2=3+2n

13
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<)

d)

e)

f)

g)

h)

ap =0p_q1+n,ap=1
Solution:
a1=a0+1=1+1

a3:a3+4=1+1+2+3+4=1+21’:=1k=n(n+1)

2

an=an_1+n=1+@

ap =0p_1+2n+3,ay=4

Solution:

a,=ay+2-1+3=4+2-1+3
a,=a;+2-2+3=4+2-1+3+2-2+3=4+2(1+2)+2-3
az;=a,+2-3+3=4+21+2+3)+3-3

a,=a,_1+2n+3=4+21+2+-+n)+n-3=n>+4n+4

ap=2a,_1—1,a,=1
Solution:
a=2ap—1=2-1-1=1
a,=2ap—-1=2-1-1=1

a,=2a, ,—1=2-1-1=1

anp =3a,-1+1,ay=1

Solution:

a;=3ap+1=3-1+1
a,=3a;+1=33-1+1)+1=3%2+3+1
a;=3a,+1=33-1+1)=33%+3+1)+1=33+32+31+30

3n+1_1
2

a,=3a,+1=3Yp33 +1=3%_,3k=

ap =Nay_1,89 =5
Solution:
a1:1'a0:1'5
a2=2-ao=2-1-5
a3=3-a0=3-2-1-5

a, =n5(n—1)! =5n!

a, =2na,_1,a9=1

Solution:

a1=2-1-ao=2-1-1

a,=2-2-ay=2-2-2-1-1

az;=2- 2=2-3-2-2-2-1-1=2-2-2-3-2-1-1=233!

' w
2

a,=2-n-a, ,=2n2"1(n-1)! =2"n!

14
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19. Suppose that the number of bacteria in a colony triples every hour.

a)

b)

Set up a recurrence relation for the number of bacteria after n hours have elapsed.
Solution:
Since the number of bacteria triples every hour, the recurrence relation should say that
the number of bacteria after n hours is 3 times the number of bacteria after n — 1
hours. Letting b,, denote the number of bacteria after n hours, this statement
translates into the recurrence relation

bn = 3bn_1

If 100 bacteria are used to begin a new colony, how many bacteria will be in the colony in
10 hours?
Solution:
The given statement is the initial condition by = 100 (the number of bacteria at the
beginning is the number of bacteria after no hours have elapsed). We solve the
recurrence relation by iteration:

b1 = 3b0

bz = 3b1 =3- 3b() = 32b()

b, =3b,_; =3-3""1by, = 3"h,

Hence, the number of bacteria in the colony after 10 hours is b,y = 31°b, = 310 -
100 = 5,904,900

15



