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Introduction

e Formal proofs of theorems designed for human consumption are almost always informal
proofs, where more than one rule of inference may be used in each step, where steps
may be skipped, where the axioms being assumed and the rules of inference used are not
explicitly stated.

Some Terminology

Table 1. Terminology

Term Explanation

Theorem A statement that can be shown to be true. In mathematical writing, the
term theorem is usually reserved for a statement that is considered at
least somewhat important.

Proposition A less important theorem.

Proof A method for demonstrating that a theorem is true.

Fact A synonym for theorem.

Result A synonym for theorem.

Axiom A statement assumed to be true and for which no exceptions have been
found.

Postulate Synonym for axiom.

Lemma A less important theorem that is helpful in the proof of other results.

Corollary A theorem that can be established directly from a theorem that has been
proved.

Conjecture A statement that is being proposed to be true, usually on the basis of
some partial evidence, a heuristic argument, or the intuition of an expert.

Understanding How Theorems are Stated

EXAMPLE O Complete the statement below by adding the qualification.
“If x >y, where x and y are positive real numbers, then x? > y2.”
Solution: The foregoing statement really means

“For all positive real numbers x and y, if x > y, then x2 > y2.”

or
vxvy(P(x) - Q(x))
P(x) x>y
Q(x) x% > y?
Domain x,yERXx>0,y>0
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Methods of Proving Theorems

Objective: Prove a theorem of the form Vx(P(x) — Q(x))
Solution: 1. Show P(c) = Q(c)
2. cisan arbitrary element of the domain
3. Apply universal generalization

Direct Proofs
1. Inthe statement,p — q, p is assumed to be true.
2. Axioms, definitions, and previously proven theorems are used with rules of inference to
show that g must also be true.

DEFINITION 1  The integer n is even if there exists an integer k such that n = 2k, and n is
odd if there exists an integer k such that n = 2k + 1. (Note that an integer is
either even or odd, and no integer is both even and odd.)

EXAMPLE 1 Give a direct proof of the theorem “if n is an odd integer, then n? is odd.”
Solution:
1. The theorem states: Vn(P(n) = Q(n))

2. P(n):nisan odd integer.

3. Q(n):n?isan odd integer.

4. Assume n is an arbitrarily chosen odd integer.

5. P(n)istrue.

6. n =2k + 1, where k is some integer.

7. 2 =QRk+1)2=4k>+4k+1=2Q2k*+2k) +1

8. Letl =2k?+ 2k, thenn? = 2] + 1.

9. 2l + 1isan odd integer by the definition and so is n?

EXAMPLE 2 Give a direct proof that if m and n are both perfect squares, then mn is also a

perfect square. (An integer a is a perfect square if there is an integer b such
that a = b?))

Solution: To produce a direct proof of this theorem, we assume that the
hypothesis of this conditional statement is true, namely, we assume that m
and n are both perfect squares. By the definition of a perfect square, it follows
that there are integers s and t such that m = s? and n = t2. The goal of the
proof is to show that mn must also be a perfect square when m and n are:
looking ahead we see how we can show this by multiplying the two equations
m = s? and n = t? together. This shows that mn = s?t?, which implies that
mn = (st)? (using commutivity and associativity of multiplication). By the
definition of perfect square, it follows that mn is also a perfect square,
because it is the square of st, which is an integer. We have proved that if m
and n are both perfect squares, then mn is also a perfect square.
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e C(Called indirect proofs.
e C(Called proof by contraposition.

P=>q=-q--p

EXAMPLE 3 Prove that if n is an integer and 3n + 2 is odd, then n is odd.
Solution:

1.

2.
3.
4

Proof by Contradiction

Assume n is even.

n = 2k, definition of even.

32k)+2=6k+2=203k+1)

3n 4+ 2 must be even because if n is even we have found that 3n + 2
is a multiple of 2, namely 2(3k + 1).

Since an integer cannot both be even and odd at the same time 3n +
2 is not odd.

However, the statement that 3n + 2 is not odd contradicts the
hypothesis that 3n + 2 is even.

Therefore n must be odd.

We have proved the theorem “If 3n + 2 is odd, then n is odd.

e (alled indirect proofs.
e C(Called proof by contradiction.

Because the proposition r A —r is a contradiction whenever r is a proposition, we can prove that
p is true if we can show that =p = (7 A —r) is true for some proposition. Proofs of this type are
called proofs by contradiction.
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EXAMPLE 10 Prove /2 is irrational by giving a proof by contradiction
Solution:
Step Argument

1

2
3
4

o]

10

11

Let p be the proposition “v2 is irrational.”

—p is the proposition “\2 is rational.”

Assume —p is true.

If V2 is rational, then there exist integers a and b with V2 = %, where

b # 0, and a and b have no common factors (so that the fraction % is

in lowest terms.
2

By squaring both sides of the equality v2 = %, we obtain 2 = %.
Hence 2b? = a?.
By the definition of an even integer, a? is even because it contains a
factor of 2.
Since a? is even, a must be even also.
Since a is even, we can write a = 2c, for some integer c.
Recall 2b? = a? and substitute 2c for a arriving at the equations

2b? = 4c?
We have now shown that the assumption of —p leads to the
equation V2 = %, where a and b have no common factors, but both a
and b are even, that s, 2 divides both a and b. Note that the statement
V2 = %, where a and b have no common factors, means, in particular,
that 2 does not divide both a and b. Because our assumption of —p
leads to the contradiction that 2 divides both a and b and 2 does not
divide both a and b, =p must be false. That is, the statement p, “2
is irrational,” is true. We have proved V2 is irrational.
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1. Use a direct proof to show that the sum of two odd integers is even.

Solution:

Step | Expression

Justification

1 Let a be an arbitrary odd integer.

Premise

2 Let b be an arbitrary odd integer.

Premise

3 Let a = 2s + 1, where s is an arbitrary
integer.

Definition of odd integer.

4 Let b = 2t + 1, where t is an arbitrary
integer.

Definition of odd integer.

a+b=2s+1+2t+1

Integer addition

6 a+b=2s+2t+2=2(s+t+1)

Distributive law of multiplication over
addition

7 let u=s+t+1, the sum of two
arbitrary integers and one. u is an
integer.

Addition is closed under the set of
integers.

a+b=2u

Substitution

9 The suma + b = 2u is even.

Definition of an even integer.

17. Prove that if n is an integer and n® + 5 is odd, then n is even using
a) a proof by contraposition.
Solution: a proof by contraposition

Step | Expression Justification
1 Let proposition p be “n3 + 5isan odd | Premise
integer.”
2 Let proposition g be “n is an even | Premise
integer.”
3 | We must show the contrapositive Definition of contrapositive.
—q = —p Definitions of even and odd
We must show that if “n is odd,” then
“n3 + 5 is even.”
4 Let n=2k+ 1, where k is an | Premise
arbitrary integer.
5 | nisan odd integer. Definition of odd integer.
6 n3+5=2k+1)3+5 Substitution
=8k3 + 12k* + 6k + 6
= 2(4k® + 6k* + 3k + 3)
7 |Let u=4k®+6k?®+3k+3, an|Premise
arbitrary integer.
8 n3 + 5 = 2u, an even integer Substitution
n3+5is—p Definition of odd integer
9 We have shown the contrapositive,
that —q = —p.
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23.

26.

b) a proof by contradiction
Solution: a proof by contradiction.
p is the proposition that n3 + 5 is odd.
q is the proposition that n is even.

Step | Expression Justification
1 Let—q be the proposition that n is | Premise
odd.
2 | n?isodd The product of two odd integers is
odd.
3 | n®isodd The product of two odd integers is
odd.
4 nd+5-n3=5 Subtraction
5 5 is even The difference of two odd numbers,
n3 + 5 and n? is even.
6 Contradiction, the integer 5 cannot be
even and odd simultaneously. Hence,
——q and n is even.

Show that at least ten of any 64 days chosen must fall on the same day of the week.
Solution:

We give a proof by contradiction. If there were nine or fewer days on each day of the week,
this would account for at most 9 X 7 = 63 days. But we chose 64 days. This contradiction
shows that at least ten of the days must be on the same day of the week.

Prove that if n is a positive integer, then n is odd if and only if 5n + 6 is odd.
Solution:

We need to prove two things.

Let p be the proposition “n is a positive odd integer.”

Let g be the proposition “5n + 6 is a positive odd integer.”

Our statement to proveisp < q.

We must showp - g A q — p.

We will show that if n is odd then 5n + 6 is odd, p — q by direct proof.

We will show that if 5n + 6 is odd then n is odd then, g — p, by contraposition. That is,
we will show —p — —q, if nis even then 5n + 6 is even.

First, we will show that if n is odd then 51 + 6 is odd, p — q by direct proof.

Step | Expression Justification
1 Letn = 2k + 1, where k is an arbitrary | Definition of odd integer.
positive integer. The domain is restricted to positive
integers.
2 5n+6 =5(2k+1)+6 Substitution
5n+6=10k+10+1
3 5n+6=205Bk+5)+1 Distributive law of multiplication over
addition.
4 |5n+6=2(5k+5)+1isodd. Definition of odd integer.
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Now, we will show that if 511 + 6 is odd then n is odd then, g — p, by contraposition. That
is, we will show —p — —q, if nis even then 5n + 6 is even.

Step | Expression Justification
1 Let n = 2k, where k is an arbitrary | Definition of an even integer.
positive integer. The domain is restricted to positive
integers.
2 5n+6 =5(2k)+6 =10k + 6 Substitution
3 5n+6 =2(5k+3) Distributive law of multiplication over
addition
4 |5n+6=2(5k+ 3)iseven. Definition of even integer.




