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Introduction
In this section we will introduce a more powerful type of logic called predicate logic.
Predicates
Consider the statement: x > 3. The statement has two parts:
1. thevariable, x and
2. the predicate, is greater than 3, > 3.
The statement "x is greater than 3”, x > 3, can be denoted by P(x). The statement P(x) is said
to be the value of the propositional function P at x. Once a value has been assigned to the
variable x, the statement P(x) becomes a proposition and has a truth value.

EXAMPLE 1 Let P(x) denote the statement “x > 3.” What are the truth values of P(4)

and P(2)?
Proposition Application Truth Value
P(4) 4>3 True
P(2) 2>3 False
EXAMPLE 2 Let A(x) denote the statement “Computer x is under attack by an intruder.”

Suppose that of the computers on campus, only CS2 and MATH1 are currently
under attack by intruders. What are the truth values of A(CS1), A(CSZ2), and

A(MATH1).
Proposition Application Truth
Value
A(CS1) Computer CS1 is under attack by an intruder. False
A(CS2) Computer CS2 is under attack by an intruder. True
A(MATH1)  Computer MATH1 is under attack by an intruder. True

EXAMPLE 3 Let Q(x,y) denote the statement “x = y + 3.” What are the truth values of
the propositions Q(1,2) and Q(3,0)?

Proposition Application Truth Value
Q(1,2) 1=2+3 False
Q@,0) 3=0+3 True

In general, a statement involving the n variables x4, x5, -*+, x,, can be denoted by
P(xq, x5, , %p) .

A statement of the form P (x4, x5, -+, x,,) is the value of the propositional function P at the n-
tuple (xq, x5, -+, xy,), and P is also called an n-place predicate or a n-ary predicate.

EXAMPLE 6 Consider the statement
ifx >0thenx =x+1.

When this statement is encountered in a program, the value of the variable
x at that point in the execution of the program is inserted into P(x), which is
“x > 0.” If P(x) is true for this value of x, the assignment statement x :=
x + 1is executed, so the value of x is increased by 1. If P(x) is false for this
value of x, the assignment statement is not executed, so the value of x is not
changed.
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Quantifiers
DEFINITION 1 The universal quantification of P(x) is the statement

“P(x) for all values of x in the domain.”

The notation VxP(x) denotes the universal quantification of P(x). Here V is
called the universal quantifier. We read VxP (x) as “for all x P(x)” or “for
every x P(x).” An element for which P(x) is false is called a counter
example of VxP(x).

TABLE 1 Quantifiers

Statement When True? When False?
VxP(x) P(x) is true for every x. There is an x for which P(x) is false.
AxP(x) There is an x for which P(x) is true. P(x) is false for every x.

EXAMPLE 8 Let P(x) be the statement “x + 1 > x." What is the truth value of the
quantification VxP(x), where the domain consists of all real numbers.

Solution: Because P(x) is true for all real numbers x, the quantification

VxP(x)
is true.

EXAMPLE 9 Let Q(x) be the statement “x > 2.” What is the truth value of the
quantification VxQ(x), where the domain consists of all real numbers?

Solution: Q(x) is not true for every real number x, because, for instance,

Q(1) is false. Thatis, x = 1 is a counter example for the statement VxQ (x).
Thus,

vxQ(x)

is false.

When all the elements in the domain can be listed — say, x4, x5, -+, x;, - it follows that the
universal quantification VxP(x) is the same as the conjunction

P(x1) ANP(x2) A= AP(xy)
because this conjunction is true if and only if P(x;), P(x5), -+, P(x,,) are all true.

EXAMPLE 11 ~ What is the truth value of VxP(x), where P(x) is the statement “x* < 10”
and the domain consists of the positive integers not exceeding 4?

Solution: The statement YxP(x) is the same as the conjunction
P(1)AP(2)AP(3)AP(4),

because the domain consists of the integers 1, 2, 3, and 4. Because P(4),
which is the statement “4% < 10” is false, it follows that VxP(x) is false.
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DEFINITION 2 The existential quantification of P(x) is the proposition
“There exists an element x in the domain such that P(x).”

We use the notation 3xP(x) for all the existential quantification of P(x).
Here 3 is called the existential quantifier.

e A domain must always be specified when a statement 3xP(x) is used. Furthermore,
the meaning of 3xP(x) changes when the domain changes. Without specifying the
domain, the statement 3xP(x) has no meaning.

e Besides the words “there exists,” we can also express existential quantification in many
other ways, such as by using the words “for some,” “for at least one,” or “there is.” The
existential quantification 3xP(x) is read as

“There is an x such that P(x),”

“There is at least one x such that P(x),”
or

“For some x P(x).”

EXAMPLE 14  Let P(x) be the statement “x > 3.” What is the truth value of the
quantification 3xP(x), where the domain consists of all real numbers?

Solution: Because “x > 3” is sometimes true — for instance, when x = 4
P(x) - the existential quantification of P(x), which is 3xP(x), is true.

EXAMPLE 15 Let Q(x) be the statement “x = x + 1.” What is the truth value of the
quantification 3xQ(x), where the domain consists of all real numbers?

Solution: Because Q(x) is false for every real number x, the existential
quantification of Q(x), which is 3xQ(x) is false.

Remark: Generally, an implicit assumption is made that all domains of discourse for quantifiers
are nonempty. If the domain is empty, then 3xQ(x) is false whenever Q(x) is a propositional
function because when the domain is empty, there can be no element x in the domain for which

Q(x) is true.

When all the elements in the domain can be listed — say, x4, x5, -+, x;, - it follows that the
existential quantification 3xP (x) is the same as the disjunction

P(x1) V P(x2) VeV P(xn)

because this disjunction is true if and only if at least one of P(x;), P(x3), -, P(x;) is true.
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EXAMPLE 16  What is the truth value of 3xP(x), where P(x) is the statement “x~ > 10”
and the universe of discourse consists of the positive integers not exceeding
4?

Solution: Because the domain is {1,2,3,4}, the proposition IxP(x) is the
same as the disjunction
P(1)VvP(2)VP3)VPH4).

Because P(4), which is the statement “4% > 10,” is true, it follows that
AxP(x) is true.

Other Quantifiers
Name Notation Description
uniqueness quantifier 3! The notation 3! xP(x) states "There exists a
unique x such that P(x) is true.” Other phrases
for uniqueness quantification include “there is
exactly one” and “there is one and only one.”
uniqueness quantifier 3, 3, xP(x)

Quantifiers with Restricted Domains
e A condition appears after the quantifier. The condition is an expression that a variable
must satisfy.

EXAMPLE 17  What do the statements Vx < 0(x? > 0),Vy # 0(y3 # 0),and 3z >
0(z? = 2) mean, where the domain in each case consists of the real
numbers?

Solution: The statement Vx < 0(x? > 0) states that for every real number x
with x < 0, x2 > 0. That is, it states “The square of a negative real number
is positive.” This statement is the same as Vx(x < 0 - x2 > 0).

The statement Vy # 0(y3 # 0) states that for every real number y with y #
0, we have y3 # 0. That is, it states “The cube of every nonzero real number

is nonzero.” Note that this statement is equivalent to, Vy(y # 0 - y3 #
0).

Finally, the statement 3z > 0(z2 = 2) states that there exists a real number
z with z > 0 such that z? = 2. That s, it states “There is a positive square
root of 2.” This statement is equivalent to 3z(z > 0 A z2 = 2).

Precedence of Quantifiers

The quantifiers ¥ and 3 have higher precedence than all logical operators from propositional
calculus. For example, VxP(x) V Q(x) is the disjunction of VxP(x) and Q(x). In other words, it
means (VxP(x) ) vV (Q(x)) rather than Vx(P(x) V Q(x)).
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e An occurrence of a variable may be bound.
0 An occurrence of a variable may be bound by a quantifier. For example

VxP(x,y) makes variable x bound and variable y free.

0 An occurrence of a variable may be bound by being set to a particular value.
e Anoccurrence of a variable may be free.

EXAMPLE 18

In the statement 3x(x + y = 1), the variable x is bound by the existential
quantification 3x, but the variable y is free because it is not bound by a
qguantifier and no value is assigned to this variable.

Logical Equivalences Involving Quantifiers

DEFINITION 3

EXAMPLE 19

Statements involving predicates and quantifiers are logically equivalent if
and only if they have the same truth value no matter which predicates are
substituted into these statements and which domain of discourse is used for
the variables in these propositional functions. We use the notation S = T to
indicate that two statements S and T involving predicates and quantifiers are
logically equivalent.

Show that Vx(P(x) A Q(x)) and VxP(x) A VxQ(x) are logically equivalent
(where the same domain is used throughout).

Solution: To show that these statements are logically equivalent, we must
show that they always take the same truth value, no matter what the
predicates P and @ are, and no matter which domain of discourse is used.
We can show that Vx(P(x) A Q(x)) and VxP(x) A VxQ(x) are logically
equivalent by doing two things. First, we show that if Vx(P(x) A Q(x)) is
true, then VxP(x) A VxQ(x) is true. Second, we show that if VxP(x) A
VxQ(x) is true, then Vx(P(x) A Q(x)) is true.

Assume Vx(P(x) A Q(x)) is true.

Let a be an element in the domain of discourse.

P(a) A Q(a) is true by employing the assumption.

P(a) and Q(a) is true by employing the definition of A.

Because P(a) is true and Q(a) is true for every element in the
domain we can conclude that VxP(x) and VxQ(x) are both true.
5. This means that VxP(x) A VxQ(x)

pwNPE

Assume VxP(x) A VxQ(x) is true.
VxP(x) is true.
VxQ(x) is true.
Let a be an element in the domain of discourse.
P(a) is true because VxP(x) is true.
Q(a) is true because VxQ(x) is true.
Forall a, P(a) A Q(a) is true.
7. It follows that Vx(P(x) A Q(x)).
We conclude Vx(P(x) A Q(x)) = VxP(x) AVxQ(x)

ok wnNE
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Negating Quantified Expressions

Consider the statement
“Every student in your class has taken a course in calculus.”
This statement is a universal quantification, namely,
VxP(x)
where P(x) is the statement
“x has taken a course in calculus.”

The negation of the statement is

“It is not the case that every student in your class has taken a course in calculus.”
This is equivalent to,

“There is a student in your class who has not taken a course in calculus.”

The foregoing example illustrates the following logical equivalence.
—VxP(x) = 3x-P(x)

TABLE 2 De Morgan’s Laws for Quantifiers
Negation | Equivalent Statement | When Is Negation True? When False?
—3xP(x) Vx—=P(x) For every x, P(x) is false There is an x, for
which P(x) is true.
—-VxP(x) Ax-P(x) There is an x, for which P(x) is | P(x) is true for every
false. X.

Remark: When the domain of a predicate P(x) consists of n elements, where n is a positive
integer, the rules for negating quantified statements are exactly the same as De Morgan’s laws
discussed in Section 1.2. This is why these rules are called De Morgan’s laws for quantifiers.
When the domain has n elements x4, x5, **+, X5, it follows that =VxP(x) is the same as
—|(P(x1) AP(xy) A=A P(xn)), which is equivalent to =P (x;) V =P (x,) V -V =P (x,) by De
Morgan’s laws, and this is the same as 3x—P(x). Similarly, =3xP(x) is the same as = ( P(x;) V
P(x3) V-V P(xy)), which by De Morgan’s laws is equivalent to =P (x;) A =P(x3) A+ A
—P(x,), and this is the same as Vx—P(x).

EXAMPLE 20.1 What is the negation of the statement “There is an honest politician?”

Solution: Let H(x) denote “x is honest.” Then the statement “There is an
honest politician” is represented by 3xH (x), where the domain consists of
all politicians.

The negation of this statement is =3xH (x), which is equivalent to
Vx—H(x). This negation can be expressed unambiguously in English as
“Every politician is dishonest.”
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EXAMPLE 21.1 What are the negations of the statements ‘v’x(x2 > x) and 3x(x? = 2)?

EXAMPLE 22

Solution: The negation of Vx(x? > x) is the statement =Vx(x? > x), which
is equivalent to 3x—(x? > x). This can be rewritten as 3x(x? < x). The
truth values of these statements depend on the domain.

Show that =Vx(P(x) = Q(x)) = Ix(P(x) A =Q(x))

Solution:
Expression Justification
-Vx(P(x) -» Q(x)) Initial assumption
Ax(=(P(x) - Q(x))) Table 2, row 2
Ax(P(x) A =Q(x)) Section 1.2, Table 7, row 5
Expression Justification
Ax(P(x) A =Q(x)) Initial assumption
Ax(=(P(x) - Q(x))) Section 1.2, Table 7, row 5
-Vx(P(x) - Q(x)) Table 2, row 2

Translating from English into Logical Expressions

EXAMPLE 23

Express the statement “Every student in this class has studied calculus” using
predicates and quantifiers.

Solution: First, we rewrite the statement so that we can clearly identify the
appropriate quantifiers to use.

“For every student in this class, that student has studied calculus.”
Next, we introduce a variable x so that our statement becomes

“For every student x in this class, x has studied calculus.”
We introduce C(x), which is the statement “x has studied calculus.” We
also confine the domain of discourse to students in the class. Our statement
can be expressed

VxC(x)

If we wish to change to domain of discourse to consist of all people, we need
to express our statement as
“For every person x, if the person x is a student in this class then x has
studied calculus.”

Let S(x) represent the statement “x is a person in this class.” Our statement
can be represented as
Vx(S(x) = C(x))

Caution! Our statement cannot be expressed as Vx(S(x) A C(x)) because
this statement says that all people are students in this class and have studied
calculus!

Using Quantifiers in System Specifications

e under construction
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Examples from Lewis Carroll
e under construction

Logic Programming
e under construction
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3. Let Q(x,y) denote the statement “the word x is the capital of y.” What are these truth values?
Solution:
Part Predicate Truth Value

a Q(Denver, Colorado) T

b Q(Detroit, Michigan) F

c Q(Massachusetts, Boston) F

d Q(New York, New York) F

7. Translate these statements into English where C(x) is “x is a comedian” and F(x) is "x is funny” and
the domain consists of all people.

Solution:
Part Logical Expression English Equivalent
For every x, if x is a comedian, then x is funny.
vx(C F
a xX(C(x) = F(x) Every comedian is funny.
b Vx(C(x) A F(x)) For every x, x is a comedian and x is funny.

Every person is a funny comedian.

There exists an x, if x is a comedian, then x is funny.

c Ax(C(x) » F(x)) There exists a person such that if he or she is a comedian,
then he or she is funny.

There exists an x, x is a comedian and x is funny.

There exists a funny comedian

d Ax(C(x) A F(x))

13. Determine the truth value of each of these statements if the domain consists of all integers

Solution:
Part Predicate Justification Truth Value
a vn(n+ 1 >n) | Subtracting n from both sides of the inequality we T
find
1>0
which we know is always true.
b In(2n = 3n) We need only find an integer that makes the T
predicate true for the statement to be true. Such an
integer is zero (0).
2:-0=3-0=0
c In(n=-n) We need only find an integer that makes the T
predicate true for the statement to be true. Such an
integer is zero (0).
0=-0=0
d vn(3n < 4n) We need only find an integer that makes the F
predicate false for the statement to be false. The
negative integers make the predicate false.
3(-1) £4(-1
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27. Translate these statements into logical expressions in three different ways by varying the domain and

by using predicates with one and two variables.

Solution:
a) Astudent in your school has lived in Vietnam.
Solution:
Predicate Meaning
Y(x) x is in your school.
V(x) x has lived in Vietnam.
D(x,y) person x has lived country y.
domain the domain is just your schoolmates AxV(x)
one variable the domain is all people Ax(Y(x) AV(x))
two variables the domain is all people Ax(Y(x) A D(x,Vietnam))

b) Thereis a student in your school who cannot speak Hindi.

Solution:
Predicate Meaning
Y(x) X is in your class.
H(x) x can speak Hindi.
S(x,y) person x can speak language y.
domain the domain is just Ax(=H(x))
your class
one variable the domain is all Ax(Y(x) A ~H(x))
people

two variables

the domain is all
people

Ax(¥ (x) A =S(x, Hindi))

c) Astudent in your school knows Java, Prolog, and, C++.

Solution:
Predicate Meaning
Y(x) x is in your school.
J(x) x knows Java.
P(x) x knows Prolog.
C(x) x knows C++.
K(x,y) person x knows programming language y.
domain the domain is Ax(J(x) A P(x) A C(x))
just your school
one variable the domain is all Ax(Y(x) AJ(x) AP(x) A C(x))
people
two variables | the domainisall | JIx(Y(x) A K(x,Java) A K(x, Prolog) A K(x,C+ +))
people

10
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d) Everyone in your class enjoys Thai food.
Solution:
Predicate Meaning
Y(x) X is in your class.
T(x) X enjoys Thai food.
E(x,y) person x enjoys food from country y.
domain the domain is just vx(T(x))
your class
one variable the domain is all vx(Y(x) = T(x))
people
two variables | the domain is all vx(Y(x) = E(x, Thai))
people

e) Someone in your class does not play Hockey.

Solution:
Predicate Meaning
Y(x) x is in your school.
H(x) x plays Hockey.
P(x,y) person x plays sport y.
domain the domain is just Ax(=H(x))
your school
one variable the domain is all Ax(Y(x) A =H(x))
people
two variables the domain is all Ix(Y(x) A =P(x,Hockey))
people

11



