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Introduction 
In this section we will introduce a more powerful type of logic called predicate logic.  
Predicates 
Consider the statement: 𝑥𝑥 > 3.  The statement has two parts: 

1. the variable, 𝑥𝑥 and 
2. the predicate, is greater than 3, > 3. 

The statement "𝑥𝑥 is greater than 3”, 𝑥𝑥 > 3, can be denoted by 𝑃𝑃(𝑥𝑥).  The statement 𝑃𝑃(𝑥𝑥) is said 
to be the value of the propositional function 𝑃𝑃 at 𝑥𝑥.  Once a value has been assigned to the 
variable 𝑥𝑥, the statement 𝑃𝑃(𝑥𝑥) becomes a proposition and has a truth value. 
 

EXAMPLE 1 Let 𝑃𝑃(𝑥𝑥) denote the statement “𝑥𝑥 > 3.”  What are the truth values of 𝑃𝑃(4) 
and 𝑃𝑃(2)? 

Proposition Application Truth Value 
𝑃𝑃(4) 𝟒𝟒 > 3 True 
𝑃𝑃(2) 𝟐𝟐 > 3 False 

 
EXAMPLE 2 Let 𝐴𝐴(𝑥𝑥) denote the statement “Computer 𝑥𝑥 is under attack by an intruder.”  

Suppose that of the computers on campus, only CS2 and MATH1 are currently 
under attack by intruders.  What are the truth values of A(CS1), A(CS2), and 
A(MATH1). 
Proposition Application Truth 

Value 
A(CS1) Computer CS1 is under attack by an intruder. False 
A(CS2) Computer CS2 is under attack by an intruder. True 

A(MATH1) Computer MATH1 is under attack by an intruder. True 
 

EXAMPLE 3 Let 𝑄𝑄(𝑥𝑥,𝑦𝑦) denote the statement “𝑥𝑥 = 𝑦𝑦 + 3.”  What are the truth values of 
the propositions 𝑄𝑄(1,2) and 𝑄𝑄(3,0)? 

Proposition Application Truth Value 
𝑄𝑄(1,2) 1 = 2 + 3 False 
𝑄𝑄(3,0) 3 = 0 + 3 True 

 
In general, a statement involving the 𝑛𝑛 variables 𝑥𝑥1,𝑥𝑥2,⋯ , 𝑥𝑥𝑛𝑛 can be denoted by  
 
 𝑃𝑃(𝑥𝑥1, 𝑥𝑥2,⋯ , 𝑥𝑥𝑛𝑛) . 
 
A statement of the form 𝑃𝑃(𝑥𝑥1,𝑥𝑥2,⋯ , 𝑥𝑥𝑛𝑛) is the value of the propositional function 𝑃𝑃 at the 𝑛𝑛-
tuple (𝑥𝑥1,𝑥𝑥2,⋯ , 𝑥𝑥𝑛𝑛), and 𝑃𝑃 is also called an 𝑛𝑛-place predicate or a 𝑛𝑛-ary predicate. 
 

EXAMPLE 6 Consider the statement 
if 𝑥𝑥 > 0 then 𝑥𝑥 ≔ 𝑥𝑥 + 1. 

When this statement is encountered in a program, the value of the variable 
𝑥𝑥 at that point in the execution of the program is inserted into 𝑃𝑃(𝑥𝑥), which is 
“𝑥𝑥 > 0.”  If 𝑃𝑃(𝑥𝑥) is true for this value of 𝑥𝑥, the assignment statement 𝑥𝑥 ≔
𝑥𝑥 + 1 is executed, so the value of 𝑥𝑥 is increased by 1.  If 𝑃𝑃(𝑥𝑥) is false for this 
value of 𝑥𝑥, the assignment statement is not executed, so the value of 𝑥𝑥 is not 
changed. 
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Quantifiers 
DEFINITION 1 The universal quantification of 𝑃𝑃(𝑥𝑥) is the statement 

 
“𝑃𝑃(𝑥𝑥) for all values of 𝑥𝑥 in the domain.” 

 
The notation ∀𝑥𝑥𝑥𝑥(𝑥𝑥) denotes the universal quantification of 𝑃𝑃(𝑥𝑥).  Here ∀ is 
called the universal quantifier.  We read ∀𝑥𝑥𝑥𝑥(𝑥𝑥) as “for all 𝑥𝑥 𝑃𝑃(𝑥𝑥)” or “for 
every 𝑥𝑥 𝑃𝑃(𝑥𝑥).”  An element for which 𝑃𝑃(𝑥𝑥) is false is called a counter 
example of ∀𝑥𝑥𝑥𝑥(𝑥𝑥). 

 
TABLE 1 Quantifiers 
Statement When True? When False? 
∀𝑥𝑥𝑥𝑥(𝑥𝑥) 𝑃𝑃(𝑥𝑥) is true for every 𝑥𝑥. There is an 𝑥𝑥 for which 𝑃𝑃(𝑥𝑥) is false. 
∃𝑥𝑥𝑥𝑥(𝑥𝑥) There is an 𝑥𝑥 for which 𝑃𝑃(𝑥𝑥) is true. 𝑃𝑃(𝑥𝑥) is false for every 𝑥𝑥. 

 
EXAMPLE 8 Let 𝑃𝑃(𝑥𝑥) be the statement “𝑥𝑥 + 1 > 𝑥𝑥. " What is the truth value of the 

quantification ∀𝑥𝑥𝑥𝑥(𝑥𝑥), where the domain consists of all real numbers. 
  
 Solution: Because 𝑃𝑃(𝑥𝑥) is true for all real numbers 𝑥𝑥, the quantification 

∀𝑥𝑥𝑥𝑥(𝑥𝑥) 
is true. 

 
EXAMPLE 9 Let 𝑄𝑄(𝑥𝑥) be the statement “𝑥𝑥 > 2.” What is the truth value of the 

quantification  ∀𝑥𝑥𝑥𝑥(𝑥𝑥), where the domain consists of all real numbers? 
  
 Solution:  𝑄𝑄(𝑥𝑥) is not true for every real number 𝑥𝑥, because, for instance, 

𝑸𝑸(𝟏𝟏) is false.  That is, 𝑥𝑥 = 1 is a counter example for the statement ∀𝑥𝑥𝑥𝑥(𝑥𝑥).  
Thus, 
 

∀𝑥𝑥𝑥𝑥(𝑥𝑥) 
is false. 

 
When all the elements in the domain can be listed – say, 𝑥𝑥1,𝑥𝑥2,⋯ , 𝑥𝑥𝑛𝑛 - it follows that the 
universal quantification ∀𝑥𝑥𝑥𝑥(𝑥𝑥) is the same as the conjunction 
 

𝑃𝑃(𝑥𝑥1) ∧ 𝑃𝑃(𝑥𝑥2) ∧⋯∧ 𝑃𝑃(𝑥𝑥𝑛𝑛) 
 
because this conjunction is true if and only if 𝑃𝑃(𝑥𝑥1),𝑃𝑃(𝑥𝑥2),⋯ ,𝑃𝑃(𝑥𝑥𝑛𝑛) are all true. 
 

EXAMPLE 11 What is the truth value of ∀𝑥𝑥𝑥𝑥(𝑥𝑥), where 𝑃𝑃(𝑥𝑥) is the statement “𝑥𝑥2 < 10” 
and the domain consists of the positive integers not exceeding 4? 

  
 Solution: The statement ∀𝑥𝑥𝑥𝑥(𝑥𝑥) is the same as the conjunction 

 
𝑃𝑃(1) ∧ 𝑃𝑃(2) ∧ 𝑃𝑃(3) ∧ 𝑃𝑃(4), 

 
because the domain consists of the integers 1, 2, 3, and 4.  Because 𝑃𝑃(4), 
which is the statement “42 < 10” is false, it follows that ∀𝑥𝑥𝑥𝑥(𝑥𝑥) is false. 
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DEFINITION 2 The existential quantification of 𝑃𝑃(𝑥𝑥) is the proposition 
 

“There exists an element 𝑥𝑥 in the domain such that 𝑃𝑃(𝑥𝑥).” 
 
We use the notation ∃𝑥𝑥𝑥𝑥(𝑥𝑥) for all the existential quantification of 𝑃𝑃(𝑥𝑥).  
Here ∃ is called the existential quantifier. 

• A domain must always be specified when a statement ∃𝑥𝑥𝑥𝑥(𝑥𝑥) is used.  Furthermore, 
the meaning of ∃𝑥𝑥𝑥𝑥(𝑥𝑥) changes when the domain changes.  Without specifying the 
domain, the statement ∃𝑥𝑥𝑥𝑥(𝑥𝑥) has no meaning. 

• Besides the words “there exists,” we can also express existential quantification in many 
other ways, such as by using the words “for some,” “for at least one,” or “there is.”  The 
existential quantification ∃𝑥𝑥𝑥𝑥(𝑥𝑥) is read as 
 

“There is an 𝑥𝑥 such that 𝑃𝑃(𝑥𝑥),” 
“There is at least one 𝑥𝑥 such that 𝑃𝑃(𝑥𝑥),” 

or 
“For some 𝑥𝑥 𝑃𝑃(𝑥𝑥).” 
 

EXAMPLE 14 Let 𝑃𝑃(𝑥𝑥) be the statement “𝑥𝑥 > 3.” What is the truth value of the 
quantification  ∃𝑥𝑥𝑥𝑥(𝑥𝑥), where the domain consists of all real numbers? 

  
 Solution:  Because “𝑥𝑥 > 3” is sometimes true – for instance, when 𝑥𝑥 = 4 

𝑃𝑃(𝑥𝑥)  - the existential quantification of 𝑃𝑃(𝑥𝑥), which is ∃𝑥𝑥𝑥𝑥(𝑥𝑥), is true.  
 

EXAMPLE 15 Let 𝑄𝑄(𝑥𝑥) be the statement “𝑥𝑥 = 𝑥𝑥 + 1.” What is the truth value of the 
quantification  ∃𝑥𝑥𝑥𝑥(𝑥𝑥), where the domain consists of all real numbers? 

  
 Solution:  Because 𝑄𝑄(𝑥𝑥) is false for every real number 𝑥𝑥, the existential 

quantification of 𝑄𝑄(𝑥𝑥), which is  ∃𝑥𝑥𝑥𝑥(𝑥𝑥) is false. 
 
Remark:  Generally, an implicit assumption is made that all domains of discourse for quantifiers 
are nonempty.  If the domain is empty, then  ∃𝑥𝑥𝑥𝑥(𝑥𝑥) is false whenever 𝑄𝑄(𝑥𝑥) is a propositional 
function because when the domain is empty, there can be no element 𝑥𝑥 in the domain for which  
𝑄𝑄(𝑥𝑥) is true. 
 
When all the elements in the domain can be listed – say, 𝑥𝑥1,𝑥𝑥2,⋯ , 𝑥𝑥𝑛𝑛 - it follows that the 
existential quantification ∃𝑥𝑥𝑥𝑥(𝑥𝑥) is the same as the disjunction 
 

𝑃𝑃(𝑥𝑥1) ∨ 𝑃𝑃(𝑥𝑥2) ∨⋯∨ 𝑃𝑃(𝑥𝑥𝑛𝑛) 
 
because this disjunction is true if and only if at least one of 𝑃𝑃(𝑥𝑥1),𝑃𝑃(𝑥𝑥2),⋯ ,𝑃𝑃(𝑥𝑥𝑛𝑛) is true. 
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EXAMPLE 16 What is the truth value of ∃𝑥𝑥𝑥𝑥(𝑥𝑥), where 𝑃𝑃(𝑥𝑥) is the statement “𝑥𝑥2 > 10” 
and the universe of discourse consists of the positive integers not exceeding 
4? 

  
 Solution: Because the domain is {1,2,3,4}, the proposition  ∃𝑥𝑥𝑥𝑥(𝑥𝑥) is the 

same as the disjunction 
𝑃𝑃(1) ∨ 𝑃𝑃(2) ∨ 𝑃𝑃(3) ∨ 𝑃𝑃(4). 

 
Because 𝑃𝑃(4), which is the statement “42 > 10,” is true, it follows that 
∃𝑥𝑥𝑥𝑥(𝑥𝑥) is true. 

 
Other Quantifiers 

Name Notation Description 
uniqueness quantifier ∃! The notation ∃! 𝑥𝑥𝑥𝑥(𝑥𝑥) states ”There exists a 

unique 𝑥𝑥 such that 𝑃𝑃(𝑥𝑥) is true.”  Other phrases 
for uniqueness quantification include “there is 
exactly one” and “there is one and only one.” 

uniqueness quantifier ∃1 ∃1𝑥𝑥𝑥𝑥(𝑥𝑥) 
 
Quantifiers with Restricted Domains 

• A condition appears after the quantifier.  The condition is an expression that a variable 
must satisfy. 
 

EXAMPLE 17 What do the statements ∀𝑥𝑥 < 0(𝑥𝑥2 > 0),∀𝑦𝑦 ≠ 0(𝑦𝑦3 ≠ 0), and ∃𝑧𝑧 >
0(𝑧𝑧2 = 2) mean, where the domain in each case consists of the real 
numbers? 

  
 Solution: The statement ∀𝑥𝑥 < 0(𝑥𝑥2 > 0) states that for every real number 𝑥𝑥 

with 𝑥𝑥 < 0, 𝑥𝑥2 > 0.  That is, it states “The square of a negative real number 
is positive.”  This statement is the same as ∀𝑥𝑥(𝑥𝑥 < 0 → 𝑥𝑥2 > 0). 

  
 The statement ∀𝑦𝑦 ≠ 0(𝑦𝑦3 ≠ 0) states that for every real number y with 𝑦𝑦 ≠

0, we have 𝑦𝑦3 ≠ 0.  That is, it states “The cube of every nonzero real number 
is nonzero.”  Note that this statement is equivalent to ,∀𝑦𝑦(𝑦𝑦 ≠ 0 → 𝑦𝑦3 ≠
0). 

  
 Finally, the statement ∃𝑧𝑧 > 0(𝑧𝑧2 = 2) states that there exists a real number 

z with 𝑧𝑧 > 0 such that 𝑧𝑧2 = 2.  That is, it states “There is a positive square 
root of 2.”  This statement is equivalent to ∃𝑧𝑧(𝑧𝑧 > 0 ∧ 𝑧𝑧2 = 2). 

 
Precedence of Quantifiers 
The quantifiers ∀ and ∃ have higher precedence than all logical operators from propositional 
calculus.  For example, ∀𝑥𝑥𝑥𝑥(𝑥𝑥) ∨ 𝑄𝑄(𝑥𝑥) is the disjunction of ∀𝑥𝑥𝑥𝑥(𝑥𝑥) and 𝑄𝑄(𝑥𝑥).  In other words, it 
means (∀𝑥𝑥𝑥𝑥(𝑥𝑥) ) ∨ (𝑄𝑄(𝑥𝑥)) rather than ∀𝑥𝑥(𝑃𝑃(𝑥𝑥) ∨ 𝑄𝑄(𝑥𝑥)). 
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Binding Variables 
• An occurrence of a variable may be bound. 

o An occurrence of a variable may be bound by a quantifier.  For example 
∀𝑥𝑥𝑥𝑥(𝑥𝑥,𝑦𝑦) makes variable 𝑥𝑥 bound and variable 𝑦𝑦 free. 

o An occurrence of a variable may be bound by being set to a particular value. 
• An occurrence of a variable may be free. 

 
EXAMPLE 18 In the statement ∃𝑥𝑥(𝑥𝑥 + 𝑦𝑦 = 1), the variable 𝒙𝒙 is bound by the existential 

quantification ∃𝑥𝑥, but the variable 𝒚𝒚 is free because it is not bound by a 
quantifier and no value is assigned to this variable.  

 
Logical Equivalences Involving Quantifiers 
 

DEFINITION 3 Statements involving predicates and quantifiers are logically equivalent if 
and only if they have the same truth value no matter which predicates are 
substituted into these statements and which domain of discourse is used for 
the variables in these propositional functions.  We use the notation 𝑆𝑆 ≡ 𝑇𝑇 to 
indicate that two statements S and T involving predicates and quantifiers are 
logically equivalent. 

 
EXAMPLE 19 Show that ∀𝑥𝑥(𝑃𝑃(𝑥𝑥) ∧ 𝑄𝑄(𝑥𝑥)) and ∀𝑥𝑥𝑥𝑥(𝑥𝑥) ∧ ∀𝑥𝑥𝑥𝑥(𝑥𝑥) are logically equivalent 

(where the same domain is used throughout).   
  
 Solution: To show that these statements are logically equivalent, we must 

show that they always take the same truth value, no matter what the 
predicates P and Q are, and no matter which domain of discourse is used.  
We can show that ∀𝑥𝑥(𝑃𝑃(𝑥𝑥) ∧ 𝑄𝑄(𝑥𝑥)) and ∀𝑥𝑥𝑥𝑥(𝑥𝑥) ∧ ∀𝑥𝑥𝑄𝑄(𝑥𝑥) are logically 
equivalent by doing two things.   First, we show that if ∀𝑥𝑥(𝑃𝑃(𝑥𝑥) ∧ 𝑄𝑄(𝑥𝑥)) is 
true, then ∀𝑥𝑥𝑥𝑥(𝑥𝑥) ∧ ∀𝑥𝑥𝑥𝑥(𝑥𝑥) is true.  Second, we show that if ∀𝑥𝑥𝑥𝑥(𝑥𝑥) ∧
∀𝑥𝑥𝑥𝑥(𝑥𝑥) is true, then ∀𝑥𝑥(𝑃𝑃(𝑥𝑥) ∧ 𝑄𝑄(𝑥𝑥)) is true. 

  
 Assume ∀𝑥𝑥(𝑃𝑃(𝑥𝑥) ∧ 𝑄𝑄(𝑥𝑥)) is true. 

1. Let a be an element in the domain of discourse. 
2. 𝑃𝑃(𝑎𝑎) ∧ 𝑄𝑄(𝑎𝑎) is true by employing the assumption. 
3. 𝑃𝑃(𝑎𝑎) and 𝑄𝑄(𝑎𝑎) is true by employing the definition of ∧.     
4. Because 𝑃𝑃(𝑎𝑎) is true and 𝑄𝑄(𝑎𝑎) is true for every element in the 

domain we can conclude that ∀𝑥𝑥𝑥𝑥(𝑥𝑥) and ∀𝑥𝑥𝑥𝑥(𝑥𝑥) are both true.   
5. This means that ∀𝑥𝑥𝑥𝑥(𝑥𝑥) ∧ ∀𝑥𝑥𝑥𝑥(𝑥𝑥) 

  
 Assume ∀𝑥𝑥𝑥𝑥(𝑥𝑥) ∧ ∀𝑥𝑥𝑥𝑥(𝑥𝑥) is true. 

1. ∀𝑥𝑥𝑥𝑥(𝑥𝑥) is true. 
2. ∀𝑥𝑥𝑥𝑥(𝑥𝑥) is true. 
3. Let a be an element in the domain of discourse. 
4. 𝑃𝑃(𝑎𝑎) is true because ∀𝑥𝑥𝑥𝑥(𝑥𝑥) is true. 
5. 𝑄𝑄(𝑎𝑎) is true because ∀𝑥𝑥𝑥𝑥(𝑥𝑥) is true. 
6. For all 𝑎𝑎, 𝑃𝑃(𝑎𝑎) ∧ 𝑄𝑄(𝑎𝑎) is true. 
7. It follows that ∀𝑥𝑥(𝑃𝑃(𝑥𝑥) ∧ 𝑄𝑄(𝑥𝑥)). 

 We conclude ∀𝑥𝑥(𝑃𝑃(𝑥𝑥) ∧ 𝑄𝑄(𝑥𝑥)) ≡ ∀𝑥𝑥𝑥𝑥(𝑥𝑥) ∧ ∀𝑥𝑥𝑥𝑥(𝑥𝑥) 



Discrete Structures   Lecture 5 
CMSC 2123  1.4 Predicates and Quantifiers 

 6 

Negating Quantified Expressions 
 
Consider the statement 

“Every student in your class has taken a course in calculus.” 
This statement is a universal quantification, namely, 

∀𝑥𝑥𝑥𝑥(𝑥𝑥) 
where 𝑃𝑃(𝑥𝑥) is the statement 

“𝑥𝑥 has taken a course in calculus.” 
 
The negation of the statement is  

“It is not the case that every student in your class has taken a course in calculus.” 
This is equivalent to, 

“There is a student in your class who has not taken a course in calculus.” 
 
The foregoing example illustrates the following logical equivalence. 

¬∀𝑥𝑥𝑥𝑥(𝑥𝑥) ≡ ∃𝑥𝑥¬𝑃𝑃(𝑥𝑥) 
 

TABLE 2 De Morgan’s Laws for Quantifiers 
Negation Equivalent Statement When Is Negation True? When False? 
¬∃𝑥𝑥𝑥𝑥(𝑥𝑥) ∀𝑥𝑥¬𝑃𝑃(𝑥𝑥) For every 𝑥𝑥, 𝑃𝑃(𝑥𝑥) is false There is an 𝑥𝑥, for 

which 𝑃𝑃(𝑥𝑥) is true. 
¬∀𝑥𝑥𝑥𝑥(𝑥𝑥) ∃𝑥𝑥¬𝑃𝑃(𝑥𝑥) There is an 𝑥𝑥, for which 𝑃𝑃(𝑥𝑥) is 

false. 
𝑃𝑃(𝑥𝑥) is true for every 
𝑥𝑥. 

 
Remark: When the domain of a predicate 𝑃𝑃(𝑥𝑥) consists of 𝑛𝑛 elements, where 𝑛𝑛 is a positive 
integer, the rules for negating quantified statements are exactly the same as De Morgan’s laws 
discussed in Section 1.2.  This is why these rules are called De Morgan’s laws for quantifiers.  
When the domain has 𝑛𝑛 elements 𝑥𝑥1,𝑥𝑥2,⋯ , 𝑥𝑥𝑛𝑛, it follows that ¬∀𝑥𝑥𝑥𝑥(𝑥𝑥) is the same as 
¬�𝑃𝑃(𝑥𝑥1) ∧ 𝑃𝑃(𝑥𝑥2) ∧⋯∧ 𝑃𝑃(𝑥𝑥𝑛𝑛)�, which is equivalent to ¬𝑃𝑃(𝑥𝑥1) ∨ ¬𝑃𝑃(𝑥𝑥2) ∨ ⋯∨ ¬𝑃𝑃(𝑥𝑥𝑛𝑛) by De 
Morgan’s laws, and this is the same as ∃𝑥𝑥¬𝑃𝑃(𝑥𝑥).  Similarly, ¬∃𝑥𝑥𝑥𝑥(𝑥𝑥) is the same as ¬( 𝑃𝑃(𝑥𝑥1) ∨
𝑃𝑃(𝑥𝑥2) ∨⋯∨ 𝑃𝑃(𝑥𝑥𝑛𝑛)), which by De Morgan’s laws is equivalent to ¬𝑃𝑃(𝑥𝑥1) ∧ ¬𝑃𝑃(𝑥𝑥2) ∧ ⋯∧
¬𝑃𝑃(𝑥𝑥𝑛𝑛), and this is the same as ∀𝑥𝑥¬𝑃𝑃(𝑥𝑥). 
 

EXAMPLE 20.1 What is the negation of the statement “There is an honest politician?” 
  
 Solution: Let 𝐻𝐻(𝑥𝑥) denote “𝑥𝑥 is honest.” Then the statement “There is an 

honest politician” is represented by ∃𝑥𝑥𝑥𝑥(𝑥𝑥), where the domain consists of 
all politicians. 
 
The negation of this statement is ¬∃𝑥𝑥𝑥𝑥(𝑥𝑥), which is equivalent to 
∀𝑥𝑥¬𝐻𝐻(𝑥𝑥).  This negation can be expressed unambiguously in English as 
“Every politician is dishonest.” 
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EXAMPLE 21.1 What are the negations of the statements ∀𝑥𝑥(𝑥𝑥2 > 𝑥𝑥) and ∃𝑥𝑥(𝑥𝑥2 = 2)? 
  
 Solution: The negation of ∀𝑥𝑥(𝑥𝑥2 > 𝑥𝑥) is the statement ¬∀𝑥𝑥(𝑥𝑥2 > 𝑥𝑥), which 

is equivalent to ∃𝑥𝑥¬(𝑥𝑥2 > 𝑥𝑥).  This can be rewritten as ∃𝑥𝑥(𝑥𝑥2 ≤ 𝑥𝑥).  The 
truth values of these statements depend on the domain. 

 
EXAMPLE 22 Show that ¬∀𝑥𝑥(𝑃𝑃(𝑥𝑥) → 𝑄𝑄(𝑥𝑥)) ≡ ∃𝑥𝑥(𝑃𝑃(𝑥𝑥) ∧ ¬𝑄𝑄(𝑥𝑥)) 
  
 Solution:  
 Expression Justification 
 ¬∀𝑥𝑥(𝑃𝑃(𝑥𝑥) → 𝑄𝑄(𝑥𝑥)) Initial assumption 
 ∃𝑥𝑥(¬(𝑃𝑃(𝑥𝑥) → 𝑄𝑄(𝑥𝑥))) Table 2, row 2 
 ∃𝑥𝑥(𝑃𝑃(𝑥𝑥) ∧ ¬𝑄𝑄(𝑥𝑥)) Section 1.2, Table 7, row 5 
 Expression Justification 
 ∃𝑥𝑥(𝑃𝑃(𝑥𝑥) ∧ ¬𝑄𝑄(𝑥𝑥)) Initial assumption 
 ∃𝑥𝑥(¬(𝑃𝑃(𝑥𝑥) → 𝑄𝑄(𝑥𝑥))) Section 1.2, Table 7, row 5 
 ¬∀𝑥𝑥(𝑃𝑃(𝑥𝑥) → 𝑄𝑄(𝑥𝑥)) Table 2, row 2 

 
Translating from English into Logical Expressions 
 

EXAMPLE 23 Express the statement “Every student in this class has studied calculus” using 
predicates and quantifiers. 

  
 Solution: First, we rewrite the statement so that we can clearly identify the 

appropriate quantifiers to use. 
“For every student in this class, that student has studied calculus.” 

Next, we introduce a variable 𝑥𝑥 so that our statement becomes 
“For every student 𝑥𝑥 in this class, 𝑥𝑥 has studied calculus.” 

We introduce 𝐶𝐶(𝑥𝑥), which is the statement “𝑥𝑥 has studied calculus.”  We 
also confine the domain of discourse to students in the class.  Our statement 
can be expressed 

∀𝑥𝑥𝑥𝑥(𝑥𝑥) 
  
 If we wish to change to domain of discourse to consist of all people, we need 

to express our statement as 
“For every person 𝑥𝑥, if the person 𝑥𝑥 is a student in this class then 𝑥𝑥 has 
studied calculus.” 

 
Let 𝑆𝑆(𝑥𝑥) represent the statement “𝑥𝑥 is a person in this class.”  Our statement 
can be represented as 

∀𝑥𝑥(𝑆𝑆(𝑥𝑥) → 𝐶𝐶(𝑥𝑥)) 
 
Caution! Our statement cannot be expressed as ∀𝑥𝑥(𝑆𝑆(𝑥𝑥) ∧ 𝐶𝐶(𝑥𝑥)) because 
this statement says that all people are students in this class and have studied 
calculus! 

 
Using Quantifiers in System Specifications 

• under construction 
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Examples from Lewis Carroll 
• under construction 

 
Logic Programming 

• under construction 
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3. Let 𝑄𝑄(𝑥𝑥,𝑦𝑦) denote the statement “the word 𝑥𝑥 is the capital of 𝑦𝑦.”  What are these truth values? 
Solution: 

Part Predicate Truth Value 
a 𝑸𝑸(𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃,𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂) T 
b 𝑸𝑸(𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃,𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌) F 
c 𝑸𝑸(𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌,𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁) F 
d 𝑸𝑸(𝐍𝐍𝐍𝐍𝐍𝐍 𝐘𝐘𝐘𝐘𝐘𝐘𝐘𝐘,𝐍𝐍𝐍𝐍𝐍𝐍 𝐘𝐘𝐘𝐘𝐘𝐘𝐘𝐘) F 

 
 
7. Translate these statements into English where 𝐶𝐶(𝑥𝑥) is “𝑥𝑥 is a comedian” and 𝐹𝐹(𝑥𝑥) is "𝑥𝑥 is funny” and 

the domain consists of all people. 
Solution: 

Part Logical Expression English Equivalent 

a ∀𝒙𝒙(𝑪𝑪(𝒙𝒙) → 𝑭𝑭(𝒙𝒙)) 
For every 𝒙𝒙, if 𝒙𝒙 is a comedian, then 𝒙𝒙 is funny. 
Every comedian is funny. 

b ∀𝒙𝒙(𝑪𝑪(𝒙𝒙) ∧ 𝑭𝑭(𝒙𝒙)) 
For every 𝒙𝒙, 𝒙𝒙 is a comedian and 𝒙𝒙 is funny. 
Every person is a funny comedian. 

c ∃𝒙𝒙(𝑪𝑪(𝒙𝒙) → 𝑭𝑭(𝒙𝒙)) 
There exists an 𝒙𝒙, if 𝒙𝒙 is a comedian, then 𝒙𝒙 is funny. 
There exists a person such that if he or she is a comedian, 
then he or she is funny. 

d ∃𝒙𝒙(𝑪𝑪(𝒙𝒙) ∧ 𝑭𝑭(𝒙𝒙)) 
There exists an 𝒙𝒙, 𝒙𝒙 is a comedian and 𝒙𝒙 is funny. 
There exists a funny comedian 

 
13. Determine the truth value of each of these statements if the domain consists of all integers 

Solution: 
Part Predicate Justification Truth Value 

a ∀𝒏𝒏(𝒏𝒏 + 𝟏𝟏 > 𝒏𝒏) Subtracting 𝒏𝒏 from both sides of the inequality we 
find 

𝟏𝟏 > 𝟎𝟎 
which we know is always true. 

T 

b ∃𝒏𝒏(𝟐𝟐𝟐𝟐 = 𝟑𝟑𝟑𝟑) We need only find an integer that makes the 
predicate true for the statement to be true.  Such an 
integer is zero (0). 

𝟐𝟐 ∙ 𝟎𝟎 = 𝟑𝟑 ∙ 𝟎𝟎 = 𝟎𝟎 

T 

c ∃𝒏𝒏(𝒏𝒏 = −𝒏𝒏) We need only find an integer that makes the 
predicate true for the statement to be true.  Such an 
integer is zero (0). 

𝟎𝟎 = −𝟎𝟎 = 𝟎𝟎 

T 

d ∀𝒏𝒏(𝟑𝟑𝟑𝟑 ≤ 𝟒𝟒𝟒𝟒) We need only find an integer that makes the 
predicate false for the statement to be false.  The 
negative integers make the predicate false. 

𝟑𝟑(−𝟏𝟏) ≰ 𝟒𝟒(−𝟏𝟏) 

F 
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27. Translate these statements into logical expressions in three different ways by varying the domain and 
by using predicates with one and two variables. 
Solution:  
a) A student in your school has lived in Vietnam. 

Solution: 
Predicate Meaning 
𝒀𝒀(𝒙𝒙) 𝒙𝒙 is in your school. 
𝑽𝑽(𝒙𝒙) 𝒙𝒙 has lived in Vietnam. 
𝑫𝑫(𝒙𝒙,𝒚𝒚) person 𝒙𝒙 has lived country 𝒚𝒚. 

 
 

domain the domain is just your schoolmates ∃𝒙𝒙𝒙𝒙(𝒙𝒙) 
one variable the domain is all people ∃𝒙𝒙(𝒀𝒀(𝒙𝒙) ∧ 𝑽𝑽(𝒙𝒙)) 
two variables the domain is all people  ∃𝒙𝒙(𝒀𝒀(𝒙𝒙) ∧ 𝑫𝑫(𝒙𝒙,𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽)) 

 
b) There is a student in your school who cannot speak Hindi. 

Solution: 
Predicate Meaning 
𝒀𝒀(𝒙𝒙) 𝒙𝒙 is in your class. 
𝑯𝑯(𝒙𝒙) 𝒙𝒙 can speak Hindi. 
𝑺𝑺(𝒙𝒙,𝒚𝒚) person 𝒙𝒙 can speak language 𝒚𝒚. 

 
 

domain the domain is just 
your class 

∃𝒙𝒙(¬𝑯𝑯(𝒙𝒙)) 

one variable the domain is all 
people 

∃𝒙𝒙(𝒀𝒀(𝒙𝒙) ∧ ¬𝑯𝑯(𝒙𝒙)) 

two variables the domain is all 
people  

∃𝒙𝒙(𝒀𝒀(𝒙𝒙) ∧ ¬𝑺𝑺(𝒙𝒙,𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇)) 

 
 
c) A student in your school knows Java, Prolog, and, C++. 

Solution: 
Predicate Meaning 
𝒀𝒀(𝒙𝒙) 𝒙𝒙 is in your school. 
𝑱𝑱(𝒙𝒙) 𝒙𝒙 knows Java. 
𝑷𝑷(𝒙𝒙) 𝒙𝒙 knows Prolog. 
𝑪𝑪(𝒙𝒙) 𝒙𝒙 knows C++. 
𝑲𝑲(𝒙𝒙,𝒚𝒚) person 𝒙𝒙 knows programming language 𝒚𝒚. 

 
 

domain the domain is 
just your school 

∃𝒙𝒙(𝑱𝑱(𝒙𝒙) ∧ 𝑷𝑷(𝒙𝒙) ∧ 𝑪𝑪(𝒙𝒙)) 

one variable the domain is all 
people 

∃𝒙𝒙(𝒀𝒀(𝒙𝒙) ∧ 𝑱𝑱(𝒙𝒙) ∧ 𝑷𝑷(𝒙𝒙) ∧ 𝑪𝑪(𝒙𝒙)) 

two variables the domain is all 
people  

∃𝒙𝒙(𝒀𝒀(𝒙𝒙) ∧ 𝑲𝑲(𝒙𝒙, 𝐉𝐉𝐉𝐉𝐉𝐉𝐉𝐉) ∧ 𝑲𝑲(𝒙𝒙,𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏) ∧ 𝑲𝑲(𝒙𝒙,𝐂𝐂 + +)) 
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d) Everyone in your class enjoys Thai food. 
Solution: 

Predicate Meaning 
𝒀𝒀(𝒙𝒙) 𝒙𝒙 is in your class. 
𝑻𝑻(𝒙𝒙) 𝒙𝒙 enjoys Thai food. 
𝑬𝑬(𝒙𝒙,𝒚𝒚) person 𝒙𝒙 enjoys food from country 𝒚𝒚. 

 
 

domain the domain is just 
your class 

∀𝒙𝒙(𝑻𝑻(𝒙𝒙)) 

one variable the domain is all 
people 

∀𝒙𝒙(𝒀𝒀(𝒙𝒙) → 𝑻𝑻(𝒙𝒙)) 

two variables the domain is all 
people  

∀𝒙𝒙(𝒀𝒀(𝒙𝒙) → 𝑬𝑬(𝒙𝒙,𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓)) 

 
 
e) Someone in your class does not play Hockey. 

Solution: 
Predicate Meaning 
𝒀𝒀(𝒙𝒙) 𝒙𝒙 is in your school. 
𝑯𝑯(𝒙𝒙) 𝒙𝒙 plays Hockey. 
𝑷𝑷(𝒙𝒙,𝒚𝒚) person 𝒙𝒙 plays sport 𝒚𝒚. 

 
 

domain the domain is just 
your school 

∃𝒙𝒙(¬𝑯𝑯(𝒙𝒙)) 

one variable the domain is all 
people 

∃𝒙𝒙(𝒀𝒀(𝒙𝒙) ∧ ¬𝑯𝑯(𝒙𝒙)) 

two variables the domain is all 
people  

∃𝒙𝒙(𝒀𝒀(𝒙𝒙) ∧ ¬𝑷𝑷(𝒙𝒙,𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇)) 

 
 
 


