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DEFINITION 1

Lecture 4
1.3 Propositional Equivalences

A compound proposition that is always true, no matter what the truth values
of the propositions that occur in it, is called a tautology.

A compound proposition that is always false is called a contradiction.

A compound proposition that is neither a tautology nor a contradiction is
called a contingency.

TABLE 1.1 Example of a Tautology

p -p pvVop
T F T
F T T

p V —p is a tautology because the compound proposition is true for every value of p.

TABLE 1.2 Example of a Contradiction

p —p PA-p
T F F
F T F

DEFINITION 2

The compound propositions p and g are called logically equivalent if p © q
is a tautology. The notation, p = g, denotes that p and q are logically
equivalent.

TABLE 2 De Morgan’s Laws

“(pAQ) =-pV—q
-(PVvVqg =-pAr-q

EXAMPLE 2

Show that =(p A q) and =p V —q are logically equivalent.

Solution: The truth table for these compound propositions is displayed in
Table 3. Because the truth values of the compound propositions
-(p Aq)and —pV —q agree for all possible combinations of the truth
values of p and q, it follows that —=(p A q) & —p V —q is a tautology and
these compound propositions are logically equivalent.

TABLE 3 Truth Tables for =(p A @) and =p V —q.

p q| @rg | -(prAQ “(pAg) © -pVq “pV-aq | -p | 0q

T T T F T F F | F

T F F T T T F T

F T F T T T T F

F F F T T T T T
Tautology

-(pAq) = —pV —q because =(p A q) < =p V —q is true for every value of p and q.




Discrete Structures

Lecture 4

CMSC 2123 1.3 Propositional Equivalences
TABLE 4 Truth Tables for-pV gandp — q
P q —p -pVvVqg | (pvVg@ e (P—-q) | poq
T T F T T T
T F F F T F
F T T T T T
F F T T T T
Tautology
—“pVvq =p - qbecause
(=p Vv q) © (p = q) is true for every value of p and q.
EXAMPLE 3 Show that p = q and —p V q are logically equivalent.
Solution: The truth table for these compound propositions is displayed in
Table 4.
P -P | q P—q P=q9 < =PV —pVq
T F T T T T
T F F F T F
F T T T T T
F T F T T T
(p > q) = (=pVq)becausep - q & —pV q is true for every value of p and q.

EXAMPLE 4 Show thatp Vv (g AT)and (pV q) A (p V) are logically equivalent.

Solution: The truth table for these compound propositions is displayed in

Table 5.
TABLE 5 A Demonstration Thatp V (q A1) and (p V q) A (p V 1) Are Logically Equivalent
P_q r| (qQAT) PV (qAT) pva) | pvr) | v Ar(pVr)
T T T T T T T T
T T F F T T T T
T F T F T T T T
T F F F T T T T
F T T T T T T T
F T F F F T F F
F F T F F F T F
F F F F F F F F
pv@Ar)=(pVvqg)AN(pVr)becausepV (qAT) o (pV q)A(pVr)istrue for every
value of p, gand r.
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TABLE 6. Logical Equivalences

Equivalence Name
pAT=p Identity laws
pVF=p
pVT=T Domination laws
pAF=F
PVp=p Idempotent laws
PAP=Dp
-(=p)=p Double negation law
pvVqg=qVp Commutative laws
PAG=qAp

TABLE 6. Logical Equivalences (continued)

v Vvr=pv(qVvr)
PADAT=pA(QAT)

Associative laws

pV@Ar) =@V A(VrT)
pA@Q@VT)=E(@AQV(pAT)

Distributive laws

—(pAqQ) =-pVq
-(pVqg)=-pA-gq

De Morgan’s laws

pV(pAg)=p Absorption laws
pA(PVg =p
pV-p=T Negation laws
pA—-p=F

Extended De Morgan’s laws:
(P VP2V Vpn) = (pr APz A A py)
(P AP A App) = (2P V py VeV apy)

TABLE 7 Logical Equivalences Involving Conditional Statements

P—>q=-pVq
P—>q=-q--p
PVa=-p—gq

pAq=-(p-—q)

P~ =pA—q
@->DA@P->1)=p->(qAT)
@-rA@-1)=@PVq T
@w->@vpp-r=p-(@QVr)
p-nV@-nN=p@AQ-r
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TABLE 8 Logical Equivalences Involving Biconditionals
peq=@P->9A(Qq-p)
peq=aq o ap
pegq=@AqV(apAaq)
(pe @ =peap

EXAMPLE 5.1 Use De Morgan’s laws to express the negation of “Miguel has a cellphone
and he has a laptop computer.”

Solution: Define propositions as shown below.

Variable Proposition
D “Miguel has a cellphone.”
q “Miguel has a laptop computer.”
Original Compound Proposition
PAQ “Miguel has a cellphone and Miguel has a laptop
computer.”
Negation
—(pAg)
Equivalent
-pV-q Miguel does not have a cellphone or he does not have a

laptop computer.

EXAMPLE 5.2 Use De Morgan’s laws to express the negation of “Heather will go to the
concert or Steve will go to the concert.”

Solution: Define propositions as shown below.

Variable Proposition
r “Heather will go to the concert.”
S “Steve will go the concert.”
Original Compound Proposition
rvs “Heather will go to the concert or Steve will go to the
concert.”
Negation
-(rvs)
Equivalent
—r A =S Heather will not go to the concert and Steve will not go to

the concert.

EXAMPLE 6.1 Show that —(p — q) and p A —q are logically equivalent by developing a
sequence of logical equivalencies.

Solution:
Expression Justification
-(p—q) Original left-hand side
-(=pVq) Example 3 and Table 4
——p A g De Morgan’s laws
P A-q Double negation law
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EXAMPLE 6.2 Show that —=(p — q) and p A —=q are logically equivalent by
employing truth tables. Two compound propositions are
equivalent if their equivalency is a tautology.

Solution:
P 9 p~q -(-q -9 pPrq PA-q —q
T T T F T F F
T F F T T T T
F T T F T F F
F F T F T F T

—(p — q) is logically equivalent to p A =q because —=(p = q) < p A —q is true for every
value of p and q.
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EXAMPLE 7 Show that =(pV (=pAq)) and —p A —q are logically equivalent by
developing a sequence of logical equivalencies.

Solution:
Expression Justification
“(pV(=pAQ) Original left-hand side
“pA=(=pAQq) De Morgan’slaw =(pVv q) = =p A -q
Ap A (==pVAQq) De Morgan’slaws =(p A q) = = pV —q
-pA(pV-q) Double negation law =(—=p) = p
(=p ADP)V (=p A—q) Distributive lawp A (qVT) = (pA@Q V(P AT)
F)V(=pA-a9) Negationlawp A—=p = F
(=pA—-q)VF Commutative law pvVg=qVp
—pAq Identitylaw pVF =p
EXAMPLE 8 Show that (p A q) — (p V q) is a tautology.

Solution: To show that this statement is a tautology, we will use logical
equivalences to demonstrate that it is logically equivalent to T. (Note: This
could also be done using a truth table.)

Expression Justification
(pAq) = (pVq) Original expression
A(pAQV (V) Table3(p > q) = (-pV Q)
(=pv=ag@)Vv(pVyq) De Morgan’slaw —=(pAq) = -pV q
pV-aqVpVq Restatement removing parenthesis
-pVpV-aqVgqg Commutativelawp Vg =qVp
(=pVp)V(qVQq Associative law (pvq)Vr=pVv(qVr)
(pv-p)VvV(q@V-9q) Commutative law p V q = q V p applied twice
TvT Negation law p V —p = T applied twice.
T Dominationlawp VT =T
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4. Use atruth table to verify the associative law
a) (pvgvr=pv(qVvr)
Solution:
1. How many rows are needed? Answer: 2Pl + 1 = 8+ 1 = 9rows, where |P| = the
number of propositions.
2. How many columns do we need? Let us develop the truth table a step at a time.
First we need a column for each of the propositional variables, p, q, and 7.

piq|r

3. Now we need to populate the rows for the columns labeled p, q, and 7. Alternate
Ts and Fs in the r-column.

Plq

=

M=M= 7|7 |~

4. Proceed to alternate Ts and Fs for the g- and p-columns but halve the frequency as
you move to the left.

p

=

R R R A N N NS
R A R N
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plq|r
T|T|T
T|T|F
T F|T
T|F|F
F T |T
F| T|F
FIF|T
FIF[F
Now make a column for the first operation, (p v q).
plgq|r|(pVvq)
T|T|T
T|T|F
T F|T
T|F|F
F T |T
F| T|F
FIF|T
FIF|F
Compute (p V q) in every row.
plg|r | (pvyq)
T|T|T T
T|T|F T
T F|T T
T|F|F T
F T |T T
F| T|F T
F|F|T F
FIF|F F
Now ma
plg|r | (pvg | (pvgVr
T|T|T T
T|T|F T
T F|T T
T|F|F T
F|T|T T
F|T|F T
F|F|T F
FIF|F F

Lecture 4
1.3 Propositional Equivalences

ke a column for the second operation, (pVvVq) Vr
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8. As before, compute the value of (p Vv q) V r for every row.
plq|r|(pveg | (pvgVr
T|T|T T T
T|T|F T T
T F|T T T
T F|F T T
FIT|T T T
F|T|F T T
FIF|T F T
F|F|F F F
8. Now that we have computed all the truth-values for the left side of the equivalence,
we must consider what to do next. Two expressions are equivalent if their
biconditional values are true for every value of the propositional variables. Now,
make a column having the original expression but substituting the biconditional
operator for the equivalence operator.
plq|r|(pvq | (pvgVr | (pvgVropv(gVvr)
T|T|T T T
T|T|F T T
T F|T T T
T F|F T T
FIT|T T T
F|T|F T T
FIF|T F T
F|F|F F F
9. Make two more columns. The rightmost column is labeled (q V r) and the column
between the rightmost column and the biconditional column is labeled p vV (q vV 1).
plgq|r| (pvq) |(pvqeVvr| (pvgVropv(gVvr) | pv(qVvr)|(qVr)
T|T|T T T
T|T|F T T
T|F|T T T
T|F|F T T
F|IT|T T T
F|T|F T T
F|IF|T F T
F|F|F F F
10. Complete the rightmost column (q vV ).
plgq|r| (pvq) |(@veVvr| (pvgVropv(gVvr) | pv(qVvr)|(qVr)
T|T|T T T T
T|T|F T T T
T|F|T T T T
T|F|F T T F
F|IT|T T T T
F|T|F T T T
F|IF|T F T T
F|F|F F F F
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table as shown in step 14 above.

10

plg|r| (pvg |(pveVvr| pvgVvropv(gqvr) |pv(qVvr)|(qVr)
T|T|T T T T T
T|T|F T T T T
TIF|T T T T T
T|F|F T T T F
FIT|T T T T T
FIT|F T T T T
FIF|T F T T T
FIF|F F F F F
12. Complete the biconditional column (pvVqg)Vr o pVv (qVvr).
plg|r| (pvg |(pveVvr| pvgVvropv(gvr) |pv(qVvr)|(qVr)
T|T|T T T T T T
T|T|F T T T T T
T|F|T T T T T T
T|F|F T T T T F
F|IT|T T T T T T
F|T|F T T T T T
F|F|T F T T T T
F|F|F F F T F F
14. If every value in the biconditional column is True, then the two compound
propositions are equivalent. Add an additional row forming the conclusion that we
just stated.
plgq|r| (pvq) |(@veVvr| (pvgVropv(gVvr) | pv(qVvr)|(qVr)
T|T|T T T T T T
T|T|F T T T T T
T|F|T T T T T T
T|F|F T T T T F
F|IT|T T T T T T
F|T|F T T T T T
F|F|T F T T T T
F|F|F F F T F F
(pV q) Vrisequivalentto p vV (q V r) because both compound propositions yield a
value of true for every combination of p, q, and r.
15. For the purpose of submitting an assighnment, we need only submit the finished



