

Team Identification Block

Author 1: Ms. Fiona Faultless
Student ID: *00000001
E-Mail: ffaultless@uco.edu
CRN: 11128 Autumn 2019
Author 2: Ms. Petunia Perfect
Student ID: *00000000
E-Mail: pperfect@uco.edu
CRN: 12234 Autumn 2019
Course: CMSC 2123 – Discrete Structures
Assignment: a01
Due: January 15, 2014

Scoring block			
Exercise	Maximum	Earned	Explanation
1	1	1	
3	1	1	
5	1	1	
7	1	1	
Total	4	4	

1. Which of these sentences are propositions? What are the truth values of those that are propositions?

- Boston is the capital of Massachusetts.
- Miami is the capital of Florida.
- $2 + 3 = 5$
- $5 + 7 = 10$
- $x + 2 = 11$
- Answer this question.

Answer:

Question	Proposition	Truth Value	Explanation
a	Yes	T	The proposition is a statement of fact that can be tested.
b	Yes	F	The proposition is a statement of fact that can be tested.
c	Yes	T	The proposition is an arithmetic identity that can be tested.
d	Yes	F	The proposition is an arithmetic identity that can be tested.
e	No		The equation has infinitely many solutions that are true and infinitely many solutions that are false. A proposition can have only one truth value.
f	No		The proposition is a command and has no truth value.

3. What is the negation of each of these propositions?

- Today is Thursday.
- There is no pollution in New Jersey.
- $2 + 1 = 3$.
- The summer in Maine is hot and sunny.

Answer:

Question	Statement	Negation
a	Today is Thursday.	Today is not Thursday.
b	There is no pollution in New Jersey.	There is pollution in New Jersey.
c	$2 + 1 = 3$.	$2 + 1 \neq 3$.
d	The summer in Maine is hot and sunny.	The summer in Maine is not hot or it is not sunny.

5. Let p and q be the propositions

p : Swimming at the New Jersey shore is allowed.

q : Sharks have been spotted near the shore.

Express each of these propositions as an English sentence.

- a) $\neg q$
- b) $p \wedge q$
- c) $\neg p \vee q$
- d) $p \rightarrow \neg q$
- e) $\neg q \rightarrow p$
- f) $\neg p \rightarrow \neg q$
- g) $p \leftrightarrow \neg q$
- h) $\neg p \wedge (p \vee \neg q)$

Answer:

Question	Proposition	English Equivalent
a	$\neg q$	Sharks have not been spotted near the shore.
b	$p \wedge q$	Swimming at the New Jersey shore is allowed and sharks have been spotted near the shore.
c	$\neg p \vee q$	Swimming at the New Jersey shore is not allowed or Sharks have been spotted near the shore.
d	$p \rightarrow \neg q$	If swimming at the New Jersey shore is allowed then Sharks have not been spotted near the shore.
e	$\neg q \rightarrow p$	If sharks have not been spotted near the shore then swimming at the New Jersey shore is allowed.
f	$\neg p \rightarrow \neg q$	If swimming at the New Jersey shore is not allowed then sharks have not been spotted near the shore.
g	$p \leftrightarrow \neg q$	Swimming at the New Jersey shore is allowed if and only if sharks have not been spotted near the shore.
h	$\neg p \wedge (p \vee \neg q)$	Swimming at the New Jersey shore is not allowed and, either swimming at the New Jersey shore is allowed or sharks have not been spotted near the shore.

7. Let p and q be the propositions

p : It is below freezing.

q : It is snowing.

Write these propositions using p and q and logical connectives.

Answer:

Question	English Proposition	Mathematical Equivalent
a	It is below freezing and snowing.	$p \wedge q$
b	It is below freezing but not snowing.	$p \wedge \neg q$
c	It is not below freezing and not snowing.	$\neg p \wedge \neg q$
d	It is either snowing or below freezing (or both).	$q \vee p$
e	If it is below freezing, it is also snowing.	$p \rightarrow q$
f	If it is either below freezing or it is snowing, but it is not snowing if it is below freezing.	$q \wedge \neg p$
g	That it is below freezing is necessary and sufficient for it to be snowing.	$q \rightarrow p$