

Symbol	Description	Symbol	Description
B	Outstanding Balance	i	Periodic or Monthly Interest Rate
mi	Monthly Interest Payment	R	Monthly Payment
mp	Monthly Principal Payment		

1. B is the outstanding balance. Each month the outstanding balance is diminished by the amount of the monthly payment, R , paid to principal.
2. i is the periodic or monthly interest rate. Compute $i = \frac{APR}{N \times 100}$, where APR is the Annual Percentage Rate and N is the number of payment periods in a year. N is the number of months in a year. $i = \frac{APR}{1200}$. For example, $i=0.0067$ when $APR=8$.
3. R is the monthly payment. A fixed payment is made every month. Part of the payment is allocated to interest, mi , and the remaining part is used to reduce the outstanding balance. The part used to reduce the outstanding balance is mp . $R = \frac{Pi}{1 - (1 + i)^{-n}}$, where P is the principal – the amount borrowed, i is the monthly interest rate, and n is the number of periods in the term – n is the number of months in the term. For example, the monthly payment on a loan of \$100,000 to be repaid over a term of 30 years at 8 APR is \$733.36.

To compute a mortgage amortization we need to find the sequence of outstanding balances B_0, B_1, \dots, B_n where $B_0 = P$ and $B_n = 0$ - where the initial balance is equal to the amount borrowed and the last balance is equal to zero – the mortgage is paid in full.

Use the following equations to determine the sequence of outstanding balances.

1. $mi_i = B_i i$. Find the amount paid to interest first. Find the amount paid to interest by computing the product of the outstanding balance times the monthly interest rate.
2. $mp_i = R - mi_i$. Find the amount used to reduce the outstanding balance next. Find the difference between the monthly payment and the amount paid to interest.
3. $B_{i+1} = B_i - mp_i$. Find the next outstanding balance. Subtract the amount of the monthly payment used to reduce the outstanding balance from the outstanding balance.

Exercises:

1. Find the amount paid to reduce the outstanding balance in the third payment of a loan of \$100,000 whose APR is 6 and whose term is 30 years.
2. Find the outstanding balances in the first five payments of a loan of \$50,000 at 8 APR for a term of 15 years.