
Programming I Lecture 29
CS 1613 Developing and Debugging a Class

 1

Problem: Develop class List that reads, stores, sorts, and prints a list of strings. Specifically, we want to do
the following:

1. Read a list of strings from file i01.dat
2. Print the list in the order that the strings were read.
3. Sort the list.
4. Print the list after it has been sorted

For example, suppose file i01.dat contains the strings shown in figure 1.

Figure 1. Strings in file i01.dat.

We want our program to print the same strings in alphabetical order as shown in Figure 2.

Figure 2. A lphabetized list.

The technique for developing and debugging a program is to start with a program that works. Then,
carefully and methodically test small increments to the program. This process is demonstrated below.

Start with the simplest program that works as shown in figure 3. Compile file p01.cpp. Execute program
p01.

Figure 3. File p01.cpp version 1.

Add a declaration and supporting include files that will permit the program to read file i01.dat. Compile
file p01.cpp. Execute program p01.

Figure 4. File p01.cpp version 2.

Elise Ilse Belle Gabrielle Diana Andrea Fantine Hester Cosette

{Andrea,Belle,Cosette,Diana,Elise,Fantine,Gabrielle,Hester,Ilse}

int main()
{
 return 0;
}

#include <fstream>
using namespace std;
int main()
{ ifstream i;
 return 0;
}

Programming I Lecture 29
CS 1613 Developing and Debugging a Class

 2

Declare the name of the file and open the file. Compile file p01.cpp. Execute program p01.

Figure 5. File p01.cpp version 3.

Declare the name of the file and open the file. Compile file p01.cpp. Execute program p01.

Figure 5. File p01.cpp version 3.

Put in a test that determines if file i01.dat exists. Add C++ include file iostream for the standard output,
cout. Compile file p01.cpp. Execute program p01.

Figure 6. File p01.cpp version 4.

Program p01 produces:
File i01.dat could not be opened.

The reason file i01.dat could not be opened is because file i01.dat does not exist. Create file i01.dat.
Store the strings shown in figure 1 in file i01.dat. Execute program p01 again and observe that the
program does not print the message.

#include <fstream>
using namespace std;
int main()
{ char i fn[]=”i01.dat”;
 ifstream i(i fn);
 return 0;
}

#include <fstream>
using namespace std;
int main()
{ char i fn[]=”i01.dat”;
 ifstream i(i fn);
 return 0;
}

#include <iostream>
#include <fstream>
using namespace std;
int main()
{ char i fn[]=”i01.dat”;
 ifstream i(i fn);
 if (!i) cout << “File “ << ifn << “ could not be opened.”;
 return 0;
}

Programming I Lecture 29
CS 1613 Developing and Debugging a Class

 3

Create function ListMgr and invoke the function in function main. Compile file p01.cpp. Execute
program p01.

Figure 7. File p01.cpp version 5.

Create class List and invoke the default constructor for class List. Compile file p01.cpp. Execute program
p01.

Figure 8. File p01.cpp version 6.

#include <iostream>
#include <fstream>
using namespace std;
void ListMgr(istream& i,ostream& o)
{
}
int main()
{ char i fn[]=”i01.dat”;
 ifstream i(i fn);
 if (!i) cout << “File “ << ifn << “ could not be opened.”;
 ListMgr(i,cout);
 return 0;
}

#include <iostream>
#include <fstream>
using namespace std;
class List {
};
void ListMgr(istream& i,ostream& o)
{ List L;
}
int main()
{ char i fn[]=”i01.dat”;
 ifstream i(i fn);
 if (!i) cout << “File “ << ifn << “ could not be opened.”;
 ListMgr(i,cout);
 return 0;
}

Programming I Lecture 29
CS 1613 Developing and Debugging a Class

 4

Declare the data members of class List. Do not forget to include standard C++ include file string..
Compile file p01.cpp. Execute program p01.

Figure 9. File p01.cpp version 7.

Declare the data members of class List. Do not forget to include standard C++ include file string..
Compile file p01.cpp. Execute program p01.

Figure 10. File p01.cpp version 8.

#include <iostream>
#include <fstream>
#include <string>
using namespace std;
class List {
 int size; //Number of available elements
 int count; //Number of occupied elements
 //Index of the next available element
 string* L; //Points to a dynamically allocated array of strings
};
void ListMgr(istream& i,ostream& o)
{ List L;
}
int main()
{ char i fn[]=”i01.dat”;
 ifstream i(i fn);
 if (!i) cout << “File “ << ifn << “ could not be opened.”;
 ListMgr(i,cout);
 return 0;
}

#include <iostream>
#include <fstream>
#include <string>
using namespace std;
class List {
 int size; //Number of available elements
 int count; //Number of occupied elements
 //Index of the next available element
 string* L; //Points to a dynamically allocated array of strings
public:
 List():size(100),count(0){L=new string[size];}
};
void ListMgr(istream& i,ostream& o)
{ List L;
}
int main()
{ char i fn[]=”i01.dat”;
 ifstream i(i fn);
 if (!i) cout << “File “ << ifn << “ could not be opened.”;
 ListMgr(i,cout);
 return 0;
}

Programming I Lecture 29
CS 1613 Developing and Debugging a Class

 5

Write and test member function Print. The list is empty so only an opening and closing brace are
produced. Compile file p01.cpp. Execute program p01.

Figure 11. File p01.cpp version 9.
Program p01 produces:
{}

#include <iostream>
#include <fstream>
#include <string>
using namespace std;
class List {
 int size; //Number of available elements
 int count; //Number of occupied elements
 //Index of the next available element
 string* L; //Points to a dynamically allocated array of strings
public:
 List():size(100),count(0){L=new string[size];}

void Print(ostream& o)
{ o << "{";

for (int a=0;a<count;a++) {
if (a>0) o << ",";
o << L[a];

}
o << "}";

}
};
void ListMgr(istream& i,ostream& o)
{ List L;

o << endl;
L.Print(o);
o << endl;

}
int main()
{ char i fn[]=”i01.dat”;
 ifstream i(i fn);
 if (!i) cout << “File “ << ifn << “ could not be opened.”;
 ListMgr(i,cout);
 return 0;
}

Programming I Lecture 29
CS 1613 Developing and Debugging a Class

 6

Write and test member function Dump. Function Dump prints the value of private members. Note that the
call to function Print has been replaced by a call to function Dump. Compile file p01.cpp. Execute
program p01.

Figure 12. File p01.cpp version 10.
Program p01 produces:
size=100 count=0 {}

#include <iostream>
#include <fstream>
#include <string>
using namespace std;
class List {
 int size; //Number of available elements
 int count; //Number of occupied elements
 //Index of the next available element
 string* L; //Points to a dynamically allocated array of strings
public:
 List():size(100),count(0){L=new string[size];}

void Print(ostream& o)
{ o << "{";

for (int a=0;a<count;a++) {
if (a>0) o << ",";
o << L[a];

}
o << "}";

}
void Dump(ostream& o)
{ o << "size=" << size << " count=" << count << " ";

Print(o);
}

};
void ListMgr(istream& i,ostream& o)
{ List L;

o << endl;
L.Dump(o);
o << endl;

}
int main()
{ char i fn[]=”i01.dat”;
 ifstream i(i fn);
 if (!i) cout << “File “ << ifn << “ could not be opened.”;
 ListMgr(i,cout);
 return 0;
}

Programming I Lecture 29
CS 1613 Developing and Debugging a Class

 7

Write and test member function Insert. Function Insert must ensure that space is available for the string to
be inserted. Function Insert requires the existence of function IsFull and constructor ListFullException.
Write function IsFull and the empty class ListFullException. Compile file p01.cpp. Execute program p01.

Figure 13. File p01.cpp version 11.
Program p01 produces:
size=100 count=1 {Abigail}

#include <iostream>
#include <fstream>
#include <string>
using namespace std;
class List {
 int size; //Number of available elements
 int count; //Number of occupied elements
 //Index of the next available element
 string* L; //Points to a dynamically allocated array of strings
public:
 class ListFullException{};
 List():size(100),count(0){L=new string[size];}

void Print(ostream& o)
{ o << "{";

for (int a=0;a<count;a++) {
if (a>0) o << ",";
o << L[a];

}
o << "}";

}
void Dump(ostream& o)
{ o << "size=" << size << " count=" << count << " ";

Print(o);
}
bool IsFull(void){return count>=size;}
void Insert(string v)
{ if (IsFull()) throw ListFullException();
 L[count++]=v;
}

};
void ListMgr(istream& i,ostream& o)
{ List L;

L.Insert(“Abigail”);
o << endl;
L.Dump(o);
o << endl;

}
int main()
{ char i fn[]=”i01.dat”;
 ifstream i(i fn);
 if (!i) cout << “File “ << ifn << “ could not be opened.”;
 ListMgr(i,cout);
 return 0;
}

Programming I Lecture 29
CS 1613 Developing and Debugging a Class

 8

Write and test member function Scan. Function Scan reads and inserts strings read from stream i into the
list. Compile file p01.cpp. Execute program p01.

Figure 14. File p01.cpp version 12.
Program p01 produces:
size=100 count=9 {Elise,Ilse,Belle,Gabrielle,Diana,Andrea,Fantine,Hester,Cosette}

#include <iostream>
#include <fstream>
#include <string>
using namespace std;
class List {
 int size; //Number of available elements
 int count; //Number of occupied elements
 //Index of the next available element
 string* L; //Points to a dynamically allocated array of strings
public:
 class ListFullException{};
 List():size(100),count(0){L=new string[size];}

void Print(ostream& o)
{ o << "{";

for (int a=0;a<count;a++) {
if (a>0) o << ",";
o << L[a];

}
o << "}";

}
void Dump(ostream& o)
{ o << "size=" << size << " count=" << count << " ";

Print(o);
}
bool IsFull(void){return count>=size;}
void Insert(string v)
{ if (IsFull()) throw ListFullException();
 L[count++]=v;
}
void Scan(istream& i)
{ for (;;) {

string v;
i >> v;
if (i.eof()) break;
Insert(v);

}
}

};
void ListMgr(istream& i,ostream& o)
{ List L;

L.Scan(i);
o << endl;
L.Dump(o);
o << endl;

}
int main()
{ char ifn[]=”i01.dat”;
 ifstream i(ifn);
 if (!i) cout << “File “ << ifn << “ could not be opened.”;
 ListMgr(i,cout);
 return 0;
}

Programming I Lecture 29
CS 1613 Developing and Debugging a Class

 9

Write and test member functions Swap and Sort. Functions Sort and Swap sort the list. Note that the call to
function Dump has been replaced by a call to function Print. Compile file p01.cpp. Execute program p01.

Figure 15. File p01.cpp version 13.
Program p01 produces:
{Andrea,Belle,Belle,Andrea,Diana,Andrea,Fantine,Hester,Cosette}

#include <iostream>
#include <fstream>
#include <string>
using namespace std;
class List {
 int size; //Number of available elements
 int count; //Number of occupied elements
 //Index of the next available element
 string* L; //Points to a dynamically allocated array of strings
public:
 class ListFullException{};
 List():size(100),count(0){L=new string[size];}

void Print(ostream& o)
{ o << "{";

for (int a=0;a<count;a++) {
if (a>0) o << ",";
o << L[a];

}
o << "}";

}
void Dump(ostream& o)
{ o << "size=" << size << " count=" << count << " ";

Print(o);
}
bool IsFull(void){return count>=size;}
void Insert(string v)
{ if (IsFull()) throw ListFullException();
 L[count++]=v;
}
void Scan(istream& i)
{ for (;;) {

string v;
i >> v;
if (i.eof()) break;
Insert(v);

}
}
void Swap(string& m ,string& w){string b=m;m=w;w=b;}
void Sort(void)
{ for (int eol=count-1;eol>0;eol--) {

int iom=0;
for (int i=1;i<=eol;i++) if (L[i]>L[iom]) iom=i;
Swap(L[iom],L[eol]);

}
}

};
void ListMgr(istream& i,ostream& o)
{ List L;

L.Scan(i);
L.Sort();
o << endl;L.Print(o);o << endl;

}
int main()
{ char ifn[]=”i01.dat”;
 ifstream i(ifn);
 if (!i) cout << “File “ << ifn << “ could not be opened.”;
 ListMgr(i,cout);
 return 0;
}

