
Programming I Lecture 28
CS 1613 Splitting a Project into class files

Consider program p01 in file p01.cpp below. Program p01 contains class Date. The object of this
example is to show how to split file p01.cpp into files p01.cpp, Date01.h, Date01.cpp, and p01make.

P

A
T
F
p

D

D

p

#include <iostream>
#include <fstream>
#include <iomanip>
#include <string>
using namespace std;
class Date {
 int M,D,Y; //Month, Day, Year
public:
 Date(int m,int d,int y)
 :M(m-1),D(d),Y(y)
 {}
 void Print(ostream& o)
 { static string Month[]=
 {"January","February","March","April","May","June"
 "July","August","September","October","November","December"
 };
 o << Month[M];
 o << " ";
 o << D;
 o << ", ";
 o << Y;
 }
};
int main()
{ Date SashaBDay(8,2,1995);
 cout << endl;
 SashaBDay.Print(cout);
 cout << endl;
 return 0;
}
Figure 1. File p01.cpp.
rogram p01 prints

ugust 2, 1995
able 1 lists file names together with a description of their contents
ile Description
01.cpp File p01.cpp exercises class Date. Variable SashaBDay is initialized to 8-2-1995 and

printed.
ate01.h File Date01.h contains the interface for class Date. Member data and member function

prototypes appear in the interface.
ate01.cpp File Date01.cpp contains the implementations of member functions of class Date. Member

function names are qualified with the class name (Date) and the global resolution operator
(::).

01make File p01make contains instructions for creating executable file p01. Instructions in file
p01make are executed by the UNIX utility make.

Table 1. Files of project p01 and their descriptions.

1

Programming I Lecture 28
CS 1613 Splitting a Project into class files

File p01.cpp has been revised to its new contents below. Note the absence of class Date. Note the
inclusion of file Date01.h. class Date defines the new type Date.

Figure 2. File p01.cpp revised.

//---
//C++ include files
//---
#include <iostream>
#include <fstream>
#include <iomanip>
#include <string>
using namespace std;
//---
//Application include files
//---
#include "Date01.h"
//---
//Function main exercises class Date
//---
int main()
{ Date SashaBDay(8,2,1995);
 cout << endl;
 SashaBDay.Print(cout);
 cout << endl;
 return 0;
}

File Date01.h defines the interface for class Date. The interface is used in file p01.cpp where a variable of
type Date is declared. The interface is also included in file Date01.cpp. The interface is validated when
file Date01.cpp is compiled. Any differences between member function prototypes in file Date01.h and
member function implementations in file Date01.cpp are noted in compilation errors.

#ifndef Date01_h
#define Date01_h 1
//---
//C++ include files
//---
#include <iostream>
#include <fstream>
#include <iomanip>
using namespace std;
//---
//Application include files
//---
class Date {
 int M,D,Y; //Month, Day, Year
public:
 Date(int m,int d,int y);
 void Print(ostream& o);
};
#endif
Figure 3. File Date01.h.

2

Programming I Lecture 28
CS 1613 Splitting a Project into class files

Note the two macro directives that are given at the beginning of file Date01.h. Note the directive on the
last line of file Date01.h. The directives are
#ifndef Date01_h
#define Date01_h 1

…

#endif
The purpose of the two directives is to prevent the file from being included more than once. The C++
compiler prohibits multiple declarations of the same identifier. If file Date01.h is included more than once
in a file compiled by the C++ compiler will cause compilation errors. In particular identifier Date will be
declared two or more times.

The directive #ifndef Date01_h says “Is identifier Date01_h undefined?” If the answer is yes, then the
second directive is executed. The second directive, #define Date01_h 1, says define and assign a 1 to the
identifier Date01_h. If the answer is no, then skip all remaining source until the directive #endif. Do not
include the source between the directives #ifndef Date01_h and #endif.

File Date01.cpp contains the implementations of member functions of class Date.

//---
//C++ include files
//---
#include <iostream>
#include <fstream>
#include <iomanip>
#include <string>
using namespace std;
//---
//Application include files
//---
#include "Date01.h"
//---
Date::Date(int m,int d,int y):M(m-1),D(d),Y(y){}
void Date::Print(ostream& o)
{ static string Month[]=

{"January","February","March","April","May","June"
 ,”July","August","September","October","November","December"
 };

o << Month[M];
 o << " ";
 o << D;
 o << ", ";
 o << Y;
}
Figure 4. File Date01.cpp.

3

Programming I Lecture 28
CS 1613 Splitting a Project into class files

 4

File p01make contains instructions for creating executable file p01. Instructions in file p01make are
accepted and executed by the UNIX utility make. Refer to lecture note 27 for a discussion of the C++
compiler, project files, and the make utility. To invoke file p01make enter the command given on the
command line as shown.

$ make –f p01make

Figure 5. File p01make.

#--
File p01make contains instructions for the make utility that
create executable file p01.
Program p01 exercises class date.
#--
Author: Thomas R. Turner
E-Mail: trturner@ucok.edu
Date: April, 2005
#--
Copyright April, 2005 by Thomas R. Turner.
Do not reproduce without permission from Thomas R. Turner.
#--
Object files
#--
obj = p01.o Date01.o
#--
Link object files into program p01.
#--
p01: ${obj}
 g++ -o p01 ${obj} -lm
#--
Compile p01.cpp that exercises class Date
#--
p01.o: p01.cpp Date01.h
 g++ -c -g p01.cpp
#--
Compile Date01.cpp that implements member function of class Date
#--
Date01.o: Date01.cpp Date01.h
 g++ -c -g Date01.cpp

