Programming I Lecture 27

CS 1613 Program Structure and Makefiles
Translation Process ()
1. Macro Processor: source.cpp is expanded Source.cpp

by the macro processor. All macros and
#define's are replaced by C++ code.

2. C++ Language Compiler: source.cpp,
having all macro directives removed, is
translated into object representation. Only
identifiers that are defined elsewhere remain macro processor
in plain text form.

3. Linkage Editor source.o is combined with C
and C++ libraries and other .o files. C++ language compiler
External references are resolved. An
executable file is created

Notes: gt++-g-c iource.cpp
1. -g option directs the compiler to include
information for the source debugger (source.o)

2. -c option directs the compiler to produce a
relocatable object file. External references
are not resolved

3. -E option directs the compiler to stop after : .
invoking the macro processor. To view the linkage editor
result of the macro processor phase: ‘
$ g++ -E source.cpp > source.m g++ -0 executable source.o -Im
4. -o option directs the linker to assign the
name following the option to the executable
file produced. For example, (executable)
$ g++ -0 p09 p09.0 Figure 1. Translation Process
directs the linker to name the executable file
p09.

5. The linker (linkage editor) is invoked when
all the input files have a .0 suffice - when all
the input files are relocatable objects.

Programming I
CS 1613

Programs consisting of multiple source files

1. Compile all source files.
a. $g++-c—gp09.cpp

b. $g++-c—-g Random09.cpp

c. $gt+t+-c—g Card09.cpp

d. $g++-c—g Hand09.cpp

e. S$gt++-c—g Deck09.cpp

Link all objects

a
Function prototypes

1. Inform the compiler how to call a function.

2. Inform the compiler functions may be defined elsewhere

3. Validate function prototypes against actual function definitions

.h File organization.

#ifndef ...

#define ...

File description comment
Author identification comment
Standard C++ include files
Application include files
Namespaces

Class definition

#endif

WX R WD —

.cpp File organization.

File description comment

Author identification comment
Standard C++ include files
Application include files
Namespaces

Member function implementations
C++ functions

NNk WDD —

Include Files
1. The include file contains a class that defines the abstract data type.
2.

Lecture 27
Program Structure and Makefiles

. $g++-0 p09 p09.0Random09.0 Card09.0 Hand09.0 Deck09.0 -Im

The .cpp file contains the implementation of member functions in the class.

3. Directs compiler how to call functions, number and type of parameters and return type

Programming I Lecture 27
CS 1613 Program Structure and Makefiles

(p09.cpp) (Random09.cpp) (Card09.cpp) (Hand09.cpp) (Deck09.cpp)

I C++Compiler | I C++Compiler I I C++Compiler I I C++Compiler I I C++Compiler |

I I I I I
g++ -g -c p09.cpp g++ -g -¢ Random09.cpp g++ -g -¢ Card09.cpp g++-g -¢ Hand09.cpp g++ -g -¢ Deck09.cpp

Y v v Y v
(p09.0) (Random09.0) (Card09.0) (Hand09.0) (Deck09.cpp)

I Linkage Editor |

g++ -0 p09 p09.0 Random09.0 Card09.0 Hand09.0 Deck09.0 -Im

Figure 2. Program translation for a program containing multiple source files

Makefiles
1. Form
target file: source files
instructions
2. File p09make contains
obj = p09.0 Random09.0 Card09.0 Hand09.0 Deck09.0
p09: ${obj}
g++ -0 p09 ${obj} —-Im
p09.0: p09.cpp Deck09.h Hand09.h

g++-c —g p09.cpp
Random09.0: Random09.cpp Random09.h
g++ -¢ —g Random09.cpp

Card09.0: Card09.cpp Card09.h
g++ -¢c —g Card09.cpp
Hand09.0: Hand09.cpp Hand09.h Card09.h
g++ -¢ —g Hand09.cpp
Deck09.0: Deck09.cpp Deck09.h Card09.h Random09.h

g++ -¢c —g Deck09.cpp
3. Invoking makefiles
$ make -f p09make
4. File p09make notes:
4.1. Lines beginning with a # sign are comments
4.2. One or more UNIX tabs begin lines that are indented. There is no substitute for an UNIX tab.
Code a UNIX tab using an editor on the Department of Computer Science computer. A tab in a
PC or Windows editor does not translate reliably to an UNIX tab.

Programming I Lecture 27

CS 1613 Program Structure and Makefiles

File p09make creates executable file p09. File p09 deals,
sorts, and prints two poker hands.

Author: Thomas R. Turner

E-Mail: trturner@ucok.edu
Date: April, 2003
#
#

obj = p09.0 \

Random09.0 \

Card09.0 \

Hand09.0 \

Deck09.0

#Bind the objects of executable file p09 together

p09: ${obJj}

g++ -o p09 ${obj} -1lm

p09.0: p09.cpp Deck09.h Hand09.h
gt+ -c -g p09.cpp

Random09.0: Random09.cpp Random09.h
gt+ -c —-g Random09.cpp

Compile file Card09.cpp that implements class Card

Card09.o0: Card09.cpp Card09.h

gt+t -c —-g Card09.cpp

Compile file Hand.cpp that implements class Hand

Hand09.o0: Hand09.cpp Hand09.h Card09.h

gt+ -c —-g Hand09.cpp

Compile file Deck09.cpp that implements class Deck

Deck09.0: Deck09.cpp Deck09.h Card09.h Random09.h

gt+ —-c —-g Deck09.cpp

Figure 3. File p09make

