
Programming I Lecture 26
CS 1613 Structures and classes

1. #include <iostream>
2. #include <iomanip>
3. using namespace std;
4. struct Rectangle {
5. double length;
6. double width;
7. };
8. int main()
9. { Rectangle R={12.5,7};

10. cout << "length=" << R.length;
11. cout << " width=" << R.width;
12. cout << endl;
13. return 0;
14. }

Figure 1. Program p01
Program p01 produces:
length= 12.5 width=7

Program p01 notes:
1. Program p01 illustrates how the structure-type-specifier can be used to create a type in C++.
2. The grammar for C++ has been enhanced to permit the tag-name to be used everywhere. This is a

welcome addition eliminating the more cumbersome typedef declaration shown in Figure 1.
3. Rectangle R is initialized on line 8. Note the initialization syntax.

1. #include <iostream>
2. #include <iomanip>
3. using namespace std;
4. struct Rectangle {
5. double length;
6. double width;
7. double Area(void);
8. };
9. double Rectangle::Area(void)

10. { return length*width;
11. }
12. int main()
13. { Rectangle R={12.5,7};
14. cout << "length=" << R.length ;
15. cout << " width=" << R.width ;
16. cout << " Area=" << R.Area();
17. cout << endl;
18. return 0;
19. }

Figure 2. Program p02
Program p02 produces:
length= 12.5 width=7 Area=87.5

Program p02 notes:
1. Program p02 illustrates member functions.
2. The grammar for C++ permits members that are functions as well as members that contain data.

Observe function Area that is declared on line 7 on figure 2.

 1

Programming I Lecture 26
CS 1613 Structures and classes

3. The problem with member functions is finding a syntax that distinguishes member functions from
functions declared outside a structure. The global resolution operator, ::, and the structure name are
used to qualify member function names. Member function Area is defined on lines 9 – 11 in figure 2.

4. Member functions are accessed in exactly the same way as member data. The structure name is given
first, followed by a period, and the member function name appears last. Do not forget the argument
list even if it is empty.

5. Note references to members length and width in member function Area on line 10 in figure 2.
Members of a structure do not need to be qualified by their structure name in member functions.

1. #include <iostream>
2. #include <iomanip>
3. using namespace std;
4. struct Rectangle {
5. private:
6. double length;
7. double width;
8. public:
9. Rectangle(double l, double w);

10. double Area(void);
11. double Length(void);
12. double Width(void);
13. };
14. Rectangle::Rectangle(double l, double w)
15. { length=l; width=w;
16. }
17. double Rectangle::Area(void)
18. { return length*width;
19. }
20. double Rectangle::Length(void)
21. { return length;
22. }
23. double Rectangle::Width(void)
24. { return width;
25. }
26. int main()
27. { Rectangle R(12.5,7);
28. cout << "length=" << R.Length() ;
29. cout << " width=" << R.Width() ;
30. cout << " Area=" << R.Area();
31. cout << endl;
32. return 0;
33. }

Figure 3. Program p03
Program p03 produces:
length= 12.5 width=7 Area=87.5

Program p03 notes:
1. Program p03 illustrates private and public members of a structure.
2. The directive private makes members length and width available to member functions only.
3. The directive public makes members available to any function in the file.
4. Since private members cannot be accessed in function main alternative arrangements must be made to

obtain their values. Create public member functions Length and Width to return the values of
corresponding private members.

 2

Programming I Lecture 26
CS 1613 Structures and classes

5. Members do not need to be qualified by the structure in which they are declared to be referenced in a
member function. Note members length and width are not qualified by a reference to a structure of
type Rectangle.

6. Program p03 illustrates a constructor.
6.1. A constructor is a member function having the same name as the structure name.
6.2. A constructor is a member function having no return type.
6.3. A constructor is called when a structure is allocated. A constructor is called when the structure

name is used to declare a variable of that type. Structure R, having type Rectangle, is declared on
line 27 of figure 3. The constructor (a member function) is called on line 27 of figure 3.

6.4. The values of the arguments of a constructor are used to initialize private member data. Formal
parameter l is assigned to private member length in member function Rectangle. Formal
parameter w is assigned to private member width in member function Rectangle.

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.

Program p0
length=

Program p0
1. Program

#include <iostream>
#include <iomanip>
using namespace std;
class Rectangle {

double length;
double width;

public:
Rectangle(double l, double w);
double Area(void);
double Perimeter(void);
double Length(void);
double Width(void);

};
Rectangle::Rectangle(double l, double w):length(l), width(w) {}

double Rectangle::Perimeter(void)
{ return 2*length + 2*width;
}
double Rectangle::Area(void)
{ return length*width;
}
double Rectangle::Length(void)
{ return length;
}
double Rectangle::Width(void)
{ return width;
}
int main()
{ Rectangle R(12.5,7);

cout << "length=" << R.Length() ;
cout << " width=" << R.Width() ;
cout << " Area=" << R.Area();
cout << " Perimeter=" << R.Perimeter() ;
cout << endl;
return 0;
}

Figure 4. Program p04
4 produces:
12.5 width=7 Area=87.5 Perimeter=39

4 notes:
 p04 illustrates the relationship between a class and a structure.

3

Programming I Lecture 26
CS 1613 Structures and classes

2. A class is a structure where every member is private. Public members must be explicitly identified.
Members of a structure are public by default. Note the reserve word class on line 4 of figure 4.

3. Initialization using a constructor has been extended to native types of C++. Observe that private
members length and width are initialized using standard constructors for type double on line 14 of
figure 4.

4. Observe the additional member function Perimeter declared on line 10, defined on lines 16, 17, and 18,
and called on line 33 in figure 4.

1. #include <iostream>
2. #include <iomanip>
3. using namespace std;
4. #include "Rectangle.h"
5. int main()
6. { Rectangle R(12.5,7);
7. cout << "length=" << R.Length() ;
8. cout << " width=" << R.Width() ;
9. cout << " Area=" << R.Area();

10. cout << " Perimeter=" << R.Perimeter() ;
11. cout << endl;
12. return 0;
13. }

Figure 5. File p05.cpp

1. #ifndef Rectangle_h
2. #define Rectangle_h 1
3. class Rectangle {
4. double length;
5. double width;
6. public:
7. Rectangle(double l, double w);
8. double Area(void);
9. double Perimeter(void);

10. double Length(void);
11. double Width(void);
12. };
13. #endif

Figure 6. File Rectangle.h

 4

Programming I Lecture 26
CS 1613 Structures and classes

1. #include "Rectangle.h"
2. Rectangle::Rectangle(double l, double w):length(l), width(w) {}
3. double Rectangle::Perimeter(void)
4. { return 2*length + 2*width;
5. }
6. double Rectangle::Area(void)
7. { return length*width;
8. }
9. double Rectangle::Length(void)

10. { return length;
11. }
12. double Rectangle::Width(void)
13. { return width;
14. }

Figure 7. File Rectangle.cpp

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.

Program p
length=

Program p
1. Progr

defin
2. An A

2.1.

#---
File p05make contains instructions for creating executable file p05 from
files p05.cpp, Rectangle.cpp, and Rectangle.h
#---
obj = p05.o Rectangle.o
p05: ${obj}
g++ -o p05 ${obj} –lm
p05.o: p05.cpp Rectangle.h
g++ -c –g p05.cpp
Rectangle.o: Rectangle.cpp Rectangle.h
g++ -c –g Rectangle.cpp

Figure 8. File p05make

05 produces:
 12.5 width=7 Area=87.5 Perimeter=39

05 notes:
am p05 illustrates program structure for an Abstract data type (ADT). Abstract data types are
ed by the programmer and implemented as classes in C++.
DT has an interface and an implementation.
The interface to an ADT is the .h file in C++. The .h file contains the definition of the class.
Member data and member functions are defined in the class. Member functions define the valid
operations on a variable that has the type given by the class. Member functions, Length, Width,
Area, and Perimeter define the valid operations on a variable of type Rectangle. Member data
define the representation of the type. Member data define the set of values that a variable of the
type specified by the class can take on. Member data are hidden from the users of the class.
Native type double simulates a real number. A variable of type double is represented by an
IEEE 754 double binary specification. A value that conforms to the IEEE 754 double binary
specification has three components, a sign, a characteristic, and a fraction. The programmer is
completely unaware of these three components. The operations defined for a variable of type
double are complete. These operations are addition, subtraction, multiplication, division, and the
like.

5

Programming I Lecture 26
CS 1613 Structures and classes

 6

2.1.1. Program p05 illustrates the Rectangle ADT. class Rectangle is contained in file
Rectangle.h.

2.2. The implementation of an ADT is contained in the .cpp file in C++. Member functions are
implemented in the .cpp file. Member functions are declared in the .h file and defined in the
.cpp file.
2.2.1. Program p05 illustrates an implementation of a Rectangle. Member functions of class

Rectangle are implemented in file Rectangle.cpp
3. Program p05 is composed of four source files p05.cpp, Rectangle.cpp, Rectangle.h, and p05make.

Executable file p05 is created from the four source files.
3.1. File p05.cpp exercises class Rectangle.
3.2. File Rectangle.h contains the definition of class Rectangle and serves as the interface for class

Rectangle.
3.3. File Rectangle.cpp contains the implementations of member functions of class Rectangle.
3.4. File p05make contains instructions for the Unix/Linux utility make. Instructions in file

p05make direct the make utility to create executable file p05.

