Programming I Lecture 25
CS 1613 Enumerations

enum Season {spring,summer,autumn,winter};

Figure 1. Enumeration type Season.

enumeration-type-declaration:
enum enumeration-type-identifier { enumeration-constant-list };

enumeration-type-identifier:
id

enumeration-constant-list:
enumeration-constant
enumeration-constant-list , enumeration-constant

enumeration-constant:
id

An enumeration-type specifies the set of values for that type. The set of values is given by the
enumeration-constant-list. Each enumeration-constant is a name for an integer. By default, the first
enumeration-constant in the list is assigned a value of zero (0). Subsequent enumeration-constants in the
list are given successive integer values. For example, the enumeration-type Season has enumeration-
constants spring, summer, autumn, and winter. Enumeration-constant spring has an integer value of zero
(0). In the same way, enumeration-constants summer, autumn, and winter have integer values 1, 2, and 3
respectively.

#include <iostream>

#include <iomanip>

using namespace std;

enum Season {spring,summer,autumn,winter};

int main()

{ cout<<endl
cout << "enumeration constant spring=""' << spring;
cout << endl;
cout << "enumeration constant summer=""' << summer;
cout << endl;
cout << "enumeration constant autumn=""' << qutumn;
cout << endl;
cout << "enumeration constant winter=""' << winter;
cout << endl;
return 0;

Figure 2. Program p01.
Program p01 produces:

enumeration constant spring=0
enumeration constant summer=1
enumeration constant autumn=2
enumeration constant winter=3



Programming I Lecture 25

CS 1613

Enumerations

#include <iostream>

#include <iomanip>

using namespace std;

enum Season {spring,summer,autumn,winter};

int main()

{ static char* SeasonSpelling[]={"spring"," summer"," autumn"," winter"};
for (Season s=spring;s<=winter;s=(Season)(s+1)) {

”"n

cout << endl;
cout << SeasonSpelling|s];

}
cout << endl;
return 0;
}
Figure 3. Program p02.
Program p02 output:
spring
summer
autumn
winter
Program p02 notes:

1. The for-statement variable s has type Season. Type Season is an enumerated type having
enumeration constants spring, summer, autumn, and winter with integer values 0, 1, 2, and 3
respectively.

2. The for-statement test, s<=winter, is equivalent to the test s<=3.

3. In the for-statement increment expression (s+1), s is coerced to type integer and the sum (s+1) has
type integer.

4. The integer expression (s+1) is coerced to type Season to be compatible with s in the assignment
s=Season(s+1) by the type conversion properties of the type name Season.

5. Variable s indexes array SeasonSpelling to obtain a character string that matches the enumeration

constant value of s.



Programming I Lecture 25
CS 1613 Enumerations

#include <iostream>
#include <iomanip>
using namespace std;
enum Season {spring,summer,autumn,winter};
int main()
{ static char* SeasonSpelling[]={"spring"," summer"," autumn"," winter"};
for (Season s=spring;s<=winter;s=(Season)(s+1)) {
cout << endl;
switch (s) {

case spring: cout << "spring'"; break;
case summer: cout << "summer"'; break;
case autumn: cout << "autumn''; break;
case winter: cout << "winter"; break;
}

}

cout << endl;

return 0;

Figure 4. Program p03.
Program p03 output:

spring
summer
autumn
winter

Program p03 notes:
1. Program p03 illustrates the use of enumeration-constants as case labels.



