
Programming I Lecture 25
CS 1613 Enumerations

Figure 1. Enumeration type Season.

enum Season {spring,summer,autumn,winter};

enumeration-type-declaration:

enum enumeration-type-identifier { enumeration-constant-list };

enumeration-type-identifier:

id

enumeration-constant-list:

enumeration-constant
enumeration-constant-list , enumeration-constant

enumeration-constant:
 id

An enumeration-type specifies the set of values for that type. The set of values is given by the
enumeration-constant-list. Each enumeration-constant is a name for an integer. By default, the first
enumeration-constant in the list is assigned a value of zero (0). Subsequent enumeration-constants in the
list are given successive integer values. For example, the enumeration-type Season has enumeration-
constants spring, summer, autumn, and winter. Enumeration-constant spring has an integer value of zero
(0). In the same way, enumeration-constants summer, autumn, and winter have integer values 1, 2, and 3
respectively.

Figure 2. Program p01.

#include <iostream>
#include <iomanip>
using namespace std;
enum Season {spring,summer,autumn,winter};
int main()
{ cout << endl;
 cout << "enumeration constant spring=" << spring;
 cout << endl;
 cout << "enumeration constant summer=" << summer;
 cout << endl;
 cout << "enumeration constant autumn=" << autumn;
 cout << endl;
 cout << "enumeration constant winter=" << winter;
 cout << endl;
 return 0;
}

Program p01 produces:

enumeration constant spring=0
enumeration constant summer=1
enumeration constant autumn=2
enumeration constant winter=3

 1

Programming I Lecture 25
CS 1613 Enumerations

P

s
s
a
w

P

#include <iostream>
#include <iomanip>
using namespace std;
enum Season {spring,summer,autumn,winter};
int main()
{ static char* SeasonSpelling[]={"spring","summer","autumn","winter"};
 for (Season s=spring;s<=winter;s=(Season)(s+1)) {
 cout << endl;
 cout << SeasonSpelling[s];
 }
 cout << endl;
 return 0;
}
Figure 3. Program p02.

rogram p02 output:

pring
ummer
utumn
inter

rogram p02 notes:
1. The for-statement variable s has type Season. Type Season is an enumerated type having

enumeration constants spring, summer, autumn, and winter with integer values 0, 1, 2, and 3
respectively.

2. The for-statement test, s<=winter, is equivalent to the test s<=3.
3. In the for-statement increment expression (s+1), s is coerced to type integer and the sum (s+1) has

type integer.
4. The integer expression (s+1) is coerced to type Season to be compatible with s in the assignment

s=Season(s+1) by the type conversion properties of the type name Season.
5. Variable s indexes array SeasonSpelling to obtain a character string that matches the enumeration

constant value of s.

2

Programming I Lecture 25
CS 1613 Enumerations

P

s
s
a
w

P

#include <iostream>
#include <iomanip>
using namespace std;
enum Season {spring,summer,autumn,winter};
int main()
{ static char* SeasonSpelling[]={"spring","summer","autumn","winter"};
 for (Season s=spring;s<=winter;s=(Season)(s+1)) {
 cout << endl;
 switch (s) {
 case spring: cout << "spring"; break;
 case summer: cout << "summer"; break;
 case autumn: cout << "autumn"; break;
 case winter: cout << "winter"; break;
 }
 }
 cout << endl;
 return 0;
}
3

Figure 4. Program p03.

rogram p03 output:

pring
ummer
utumn
inter

rogram p03 notes:
1. Program p03 illustrates the use of enumeration-constants as case labels.

