
Programming I Dynamic Memory Allocation
CS 1613 Lecture 24

Consider a program that is required to find all values larger than the average in a list of integers. The list is
stored in a file. The program must read and store the list to fulfill its requirement. The question is “How
big is the biggest list that program will ever be required to process?” The answer is the size of the list
could vary by orders of magnitude. Allocating storage for the largest list is a profligate waste of resource
for most invocations of the program. The solution is to allocate only as much storage as is required.
Programming languages have a facility that accommodates the need to allocate storage whose size can only
be determined during execution. The solution is dynamic memory allocation.

Allocating and reclaiming storage for scalars: Providing programming constructs that allocate and
reclaim storage fulfills the requirement. The construct for allocating storage in C++ is new. The construct
that reclaims storage is delete.

Program p01 allocates storage for an integer, assigns the integer a value of five (5), prints the integer, and
reclaims storage for the integer.

#include <iostream>
using namespace std;
int main()
{ int* p;
 p=new int;
 *p=5;
 cout << endl;
 cout << "p=" << p;
 cout << endl;
 cout << "*p=" << *p;
 cout << endl;
 delete p;
 return 0;
}

Figure 1. Program p01.
Program p01 prints:
p=00301E50
*p=5

Let us consider variable p. Variable p is a pointer. Variable p points to unnamed storage for an integer as
illustrated in Figure 2.

p

int*

p

int*

p

int*

p

int*

5

00301E50 00301E50

int* ;p p=new int; * =5;p delete ;p

(a) (b) (c) (d)
Figure 2. Variable p.

 1

Programming I Dynamic Memory Allocation
CS 1613 Lecture 24

Storage for variable p is allocated when it is declared as shown in Figure 2(a). The empty space in the
bottom box of Figure 2(a) signifies that value of variable p is undefined.

Storage for an unnamed integer is allocated in Figure 2(b). Note that variable p is assigned a value. The
value assigned to variable p is the address of the storage for the unnamed integer. Executing program p01
will likely produce different addresses for p.

In Figure 2(c), the unnamed integer is assigned the integer value 5. Note the use of the asterisk (*). The
left-hand side of the assignment expression is read from right to left. The left-hand side of the assignment
expression *p is read “obtain the value of p, now assign the value to the address stored as a value in p.”

Finally, in Figure 2(d) storage for the unnamed integer is reclaimed and the value of p is undefined.

Allocating and reclaiming storage for arrays: Storage for arrays may be allocated and reclaimed using a
slight variation of the technique for allocating and reclaiming storage for scalars. An array of one hundred
integers may be allocated in the following declaration and initialization.

int* L=new int[100];

Storage referenced by variable L may be reclaimed as shown below.

delete[] L;

Note that variable L is a pointer to an integer. Variable L points to the first element of the integer array.
Pictorially, variable L is shown in Figure 3.

L

int*

L[0]

L[1]

L[99]

*L
*(+1)L

*(+99)L
Figure 3. Variable L

Referencing elements of the anonymous array pointed to by variable L is easy. Reference elements of the
array as if variable L were an integer array. Note the equivalent element reference syntax on either side of
array elements. Element 1 can be referenced as L[1] or *(L+1). The standard array element syntax L[1] is
easier to remember.

Program p02 allocates an array of integers, assigns Fibonacci numbers to elements in the array, prints the
array, and reclaims storage for the array.

 2

Programming I Dynamic Memory Allocation
CS 1613 Lecture 24

Figure 4. Program p02.

#include <iostream>
#include <iomanip>
using namespace std;
int main()
{ const int SIZE=10;
 int* L=new int[SIZE];
 L[0]=1; L[1]=1;
 for (int a=2;a<SIZE;a++) L[a]=L[a-1]+L[a-2];
 cout << endl;
 cout << "Fibonacci Sequence";
 for (int b=0;b<SIZE;b++) {
 if (b%5==0) cout << endl;
 cout << setw(5) << L[b];
 }
 cout << endl;
 delete[] L;
 return 0;
}

Program p02 prints:
 1 1 2 3 5
 8 13 21 34 55

Categories of storage are organized by their lifetime.
1. Storage for constants is allocated during compilation. Constant storage is reclaimed when the program

returns control to the operating system.
2. Storage for static data, data declared static or data declared outside the scope of a function, is allocated

when the program is invoked by the operating system – when function main is called. Storage for
static data is reclaimed when the program returns control to the operating system.

3. Storage for local data, data declared within the scope of a function, is allocated when the function is
called and reclaimed when the function returned. Storage for local data are allocated on the invocation
stack.

4. Storage for dynamically allocated data is allocated and reclaimed under the control of the program.
However storage for all dynamically allocated data is allocated after function main is called and
reclaimed when function main returns control to the operating system.

An activation record is allocated each time a function is called and reclaimed when the function returns.
Since a function must return control to its caller, activation records form a stack. Local variables are
allocated in the activation record to which they belong. The diagram in Figure 5 shows the relationship
between local and dynamic storage for program p01. The diagram in Figure 5 is a snapshot of storage just
before the unnamed integer referenced by variable p is reclaimed.

In one storage model, activation records form a stack that grows toward memory with larger addresses.
Storage for dynamic memory grows toward memory with smaller addresses. It is possible for the
activation record stack and dynamic memory to collide under unusual circumstances. The activation record
for function main has control information in it not pictured in Figure 5. Presumably the top portion of
dynamic memory has already been allocated. Note variable p and how it points to an anonymous integer
allocated in dynamic storage. The value of the anonymous integer is 5.

 3

Programming I Dynamic Memory Allocation
CS 1613 Lecture 24

int* 00301E50p

activation record
forfunction
main

anonymous int 5

dynamic
storage

Figure 5. Storage for local and dynamic variables

 4

Programming I Dynamic Memory Allocation
CS 1613 Lecture 24

 5

Exercises:
1. Type in program p01, compile it, and make it work according to the description given in this note.
2. Type in program p02, compile it, and make it work according to the description given in this note.
3. Write program p03 that reads a list of real numbers, stores them in a dynamically allocated array

whose elements have type double, finds the average, and prints every value above the average. The
array is reclaimed just before program p03 returns. The first value read is an integer specifying the
number of real numbers in the list.

