
Programming I Command Line Arguments
CS 1613 Lecture 23

Problem: We want to parameterize our programming projects so that files containing input data and files
providing results are named on the command line. If such files are not provided on the command line, we
want our program to prompt for such files.

Programming project p00, for example, accepts a single input file and produces a single output file. Under
ordinary circumstances the command line would look like:

$ p00 i00.dat o00.dat

1. File p00 is the first string that appears on the command line and contains the executable form of

project 1.
2. File i00.dat is the second string that appears on the command line and contains input data. File i00.dat

is the first command line parameter.
3. File o00.dat is the third string that appears on the command line and contains results produced by

project p00. File o00.dat is the second command line parameter.

Another acceptable way to execute project p00 is:

$ p00 i00.dat
Enter the output file name: o00.dat

1. File p00 is the first string that appears on the command line contains the executable form of project 1.
2. File i00.dat is the second string that appears on command line and contains input data
3. The prompt

Enter the output file name:

is produced by the program p00 when fewer than three strings appear on the command line.

4. The response, o00.dat, is entered by the user.

The third and last way program p00 can be invoked is:

$./p00
Enter the input file name: i00.dat
Enter the output file name: o00.dat

1. File p00 is the first and only string that appears on the command line contains the executable form of

project 1.
2. The prompt

Enter the input file name:
is produced by program p00 when only one string appears on the command line.

3. The user enters the response, i00.dat.
4. The prompt

Enter the output file name:

is produced by the program p00 when fewer than three strings appear on the command line.

5. The response, o00.dat, is entered by the user.

 1

Programming I Command Line Arguments
CS 1613 Lecture 23

Command line arguments are stored as an array of strings. For example, given the command
$ p00 i00.dat o00.dat

and the C++ program in Figure 1.

I
t

P
r
O

int main(int argc, char* argv[]) { return 0; }

Figure 1. C++ program declarations for command line arguments

i 0 0 . d a t

o 0 0 . d a t

p 0 00

1

2

argv

Figure 2. Command line arguments

nteger parameter argc stores the number of arguments, the argument count. Array argv contains pointers
o the separate strings on the command line.

rocessing command line arguments proceeds by determining the number of arguments. If fewer than the
equisite number of arguments are supplied, then the missing arguments must be obtained from the user.
nce all the arguments are obtained, corresponding files may be opened.

2

Programming I Command Line Arguments
CS 1613 Lecture 23

Consider the first part of the problem. Process command line arguments. The program in Figure 3
processes command line arguments.

#include <iostream>
#include <fstream>
#include <string>
using namespace std;
void CommandLineException(int max,int actual)
{ cout << endl;
 cout << “Too many command line arguments.” << endl;
 cout << “A maximum of “ << max << “ arguments are permitted.” << endl;
 cout << actual << “ arguments were entered.” << endl;
 cout << “Program terminated.” << endl;
 exit(EXIT_FAILURE);
}
void FileException(char* fn)
{ cout << endl;
 cout << “File “ << fn << “ could not be opened.” << endl;
 cout << “Program terminated.” << endl;
 exit(EXIT_FAILURE);
}
int main(int argc, char* argv[])
{ char ifn[255]; //Input File Name
 char ofn[255]; //Output File Name

switch (argc) {
 case 1: //Prompt for both file names
 cout << "Enter the input file name. ";
 cin >> ifn;
 cout << "Enter the output file name. ";
 cin >> ofn;
 break;
 case 2: //Prompt for the output file name
 strcpy(ifn,argv[1]);
 cout << "Enter the output file name. ";
 cin >> ofn;
 break;
 case 3: //Both file names are arguments
 strcpy(ifn,argv[1]);
 strcpy(ofn,argv[2]);
 break;
 default:
 CommandLineException(2,argc-1);
 break;
 }
 ifstream i(ifn); if (!i) FileException(ifn);
 ofstream o(ofn); if (!o) FileException(ofn);
 //Read the input file, process input data, and write to the output file here
 o.close();
 i.close();

return 0;
}

Figure 3. C++ program that processes command line arguments

3

Programming I Command Line Arguments
CS 1613 Lecture 23

 4

Notes:
1. Include file iostream defines standard input and output classes for C++.
2. Include file fstream defines file structures and operations files (streams) in C++.
3. Include file string defines functions for C++ strings and standard C strings.
4. cout << is the C++ equivalent of printf(…)
5. cin >> is the C++ equivalent of scanf(…)
6. Declarations need only appear before they are used. Declarations do not need to precede executable

statements. Thus, the declaration

ifstream i …;

does not appear directly after a {.

7. The declaration

ifstream i …;

defines variable i. Variable i is an input file stream. An input file stream is equivalent to type FILE.

8. Variable i is initialized to the string referenced by variable ifn in the declaration ifstream i(ifn); The
equivalent declaration in C is FILE* i=fopen(ifn,”r”);

9. Input file stream i is closed by the statement i.close(); The equivalent C syntax is fclose(i);
10. Function CommandLineException is called when more than two file names are entered on the

command line. Function CommandLineException prints the appropriate error message and terminates
program execution.

11. Function FileException is called when the input file cannot be opened. The most likely reason for this
failure is that the input file does not exist in your local directory. Copy or create the input file whose
name you entered on the command line in your local directory. Like function
CommandLineException, function FileException terminates program execution.

