
Programming I File Streams
CS 1613 Lecture 22

File streams are the mechanism by which a program variable is associated with a named file listed in a
Linux directory or a Windows ® folder.

Line Statement Comment
1 ifstream i; Variable i has type input file stream. Do this first.
2 i.open(“i22.dat”); Open file i22.dat in the directory or folder that contains this

program
3 if (!i) FileException(“i22.dat”); Test variable i to determine if the prior call to function

i.open() actually opened file i22.dat. Variable i is a pointer
and will have a non-zero value if file i22.dat was opened
successfully. The value of variable i will be zero if file
i22.dat does not exist. Call function FileException if file
i22.dat could not be opened. The most likely cause of a file
exception is file i22.dat does not exist in the local directory
or folder. Create or copy file i22.dat to inhibit the
exception.

4 for (;;) {

Read all strings for input file stream i and display them on
separate lines.

5 string s;

Declare variable s to provide storage for a single string read
from input file stream i.

6 i >> s;

Attempt to read the next string from input file stream i. The
most likely possibilities are that either a string will be read
or the end-of-file marker will be read.

7 if (i.eof()) break;

Stop when the end-of-file marker is read. This sequence is
critical. Read, test, process. Never process an item read
from a file prior to testing for the end-of-file marker. The
end-of-file marker is not, repeat not, valid data.

8 cout << s << endl;

Print the strings read from the input file stream i to the
display on separate lines.

9 } End of the compound-statement executed repeatedly under
the control of the for-statement.

10 i.close(); Close input file stream i.
Table 1. Input file stream operations.

Line Statement Comment
1 ofstream o; Variable o has type output file stream. Do this first.
2 o.open(“o22.dat”); Open file o22.dat in the directory or folder that contains

this program. If file o22.dat does not exist, it is created. If
file o22.dat does exist, it is discarded and the file position
marker it set to write at the beginning of the file.

3 if (!o) FileException(“o22.dat”); Test variable o to determine if the prior call to function
o.open() actually opened file o22.dat. Variable o is a
pointer and will have a non-zero value if file o22.dat was
opened successfully. The value of variable o will be zero if
file o22.dat does not exist. Call function FileException if
file o22.dat could not be opened.

4 for (;;) {

Read all strings for output file stream o and display them on
separate lines.

5 string s;

Declare variable s to provide storage for a single string read
from standard input file stream cin.

6 cin >> s;

Attempt to read the next string from input file stream cin.

Table 2. Output file stream operations.

 1

Programming I File Streams
CS 1613 Lecture 22

Line Statement Comment
7 if (cin.eof()) break;

Stop when the end-of-file marker is read. An end-of-file
marker can be created from the keyboard by typing a ctrl-
D.

8 o << s << endl;

Print the strings read from standard input file stream cin to
output file stream o on separate lines.

9 } End of the compound-statement executed repeatedly under
the control of the for-statement.

10 o.close(); Close output file stream o. Closing output file stream o
flushes the memory buffer to disk. Failing to close output
file stream o may leave some strings in memory so that not
all strings read from cin are written to output file stream o.

Table 2. Output file stream operations.

#include <iostream>
#include <fstream>
using namespace std;
void FileException(char* fn)
{ cout << endl;
 cout << "File " << fn << " does not exist." << endl;
 cout << "Program terminated." << endl;
 exit(EXIT_FAILURE);
}
int main()
{ ifstream i;
 i.open("i22.dat");
 if (!i) FileException("i22.dat");
 ofstream o;
 o.open("o22.dat");
 if (!o) FileException("o22.dat");

 for (;;) {
 string s;
 i >> s;
 if (i.eof()) break;
 o << s << endl;
 }

 o.close();
 i.close();
 return 0;
}

Figure 1. Program p01 illustrates simple input and output file stream operations.

 2

Programming I File Streams
CS 1613 Lecture 22

Figure 2. File i22.dat.

Cows are of the bovine ilk.
One end is moo, the other milk.

Figure 3. File o22.dat.

Cows
are
of
the
bovine
ilk.
One
end
is
moo,
the
other
milk.

Standard input object cin has type istream. It is convenient to treat standard input or any input stream in
the same way as an input file stream (ifstream). An input file stream (ifstream) and an input stream
(istream) can be passed as reference parameters having type istream&.

Standard output object cout has type ostream. It is convenient to treat standard output or any output stream
in the same way as an output file stream (ofstream). An output file stream (ofstream) and an output stream
(ostream) can be passed as reference parameters having type ostream&.

Program p02 illustrates how standard input cin and standard output cout can be interchanged to help find
errors in a program.

Figure 4. Program p02, part 1.

#include <iostream>
#include <fstream>
#include <string>
using namespace std;
void FileException(char* fn)
{ cout << endl;
 cout << "File " << fn << " does not exist." << endl;
 cout << "Program terminated." << endl;
 exit(EXIT_FAILURE);
}
void CommandLineException(int max,int actual)
{ cout << endl;
 cout << "Too many arguments on the command line." << endl;
 cout << max << " arguments are permitted." << endl;
 cout << actual << " arguments were entered." << endl;
 cout << "Program terminated." << endl;
 exit(EXIT_FAILURE);
}

 3

Programming I File Streams
CS 1613 Lecture 22

 4

Figure 4. Program p02, part 2

void IOMgr(istream& i,ostream& o)
{
 for (;;) {
 string s;
 i >> s;
 if (i.eof()) break;
 o << s << endl;
 }
}
int main(int argc, char* argv[])
{ char ifn[255]; //Input File Name
 char ofn[255]; //Output File Name
 switch (argc) {
 case 1: //Prompt for both file names
 cout << "Enter the input file name. ";
 cin >> ifn;
 cout << "Enter the output file name. ";
 cin >> ofn;
 break;
 case 2: //Prompt for the output file name.
 strcpy(ifn,argv[1]); //Copy the input file name from argv[1]
 cout << "Enter the output file name. ";
 cin >> ofn;
 break;
 case 3: //Copy both file names from argv
 strcpy(ifn,argv[1]);
 strcpy(ofn,argv[2]);
 break;
 default: //Too many arguments on the command line
 CommandLineException(2,argc-1);
 break;
 }
 ifstream i(ifn); if (!i) FileException(ifn);
 ofstream o(ofn); if (!o) FileException(ofn);

 IOMgr(cin,cout);
 IOMgr(i,o);

 o.close();
 i.close();
 return 0;
}

