Programming I C Strings

CS 1613

Lecture 20

Representation:
A C-string is an array of characters terminated by a null character. For example, the string “toy” is
represented as shown in figure 1.

tjio]|y

Figure 1. C-string “toy”.

Declaration:
A C-string is declared as an array of characters. Examples are given below.

char s[10]; /ls is an array of 10 characters having elements s[0] .. s[9].
//s can hold up to 9 characters

char t[]="one”; /It is a string initialized to the characters ‘0, ‘n’, ‘e’, \0’

char u[3]="one”; // t is initialized to the characters ‘0’, ‘n’, ‘e’

/It is not a string.

char v[]={‘0’,’n’,’e’,’\0°};//v is a string having four (4) characters. Each character is initialized.
char ¢[]|=""; /le is a string having a single character, the null terminator.

/le is the empty string

Strings and pointers to strings:

1.

2.

Strings are referenced by pointers to the actual string. For example, variable ¢, is used to reference
string ¢ declared as char ="toy”;

When the name of an array appears without a subscripting operator [], the type of the array name
is changed to a pointer to the element type. For example, ¢ has type char* because elements of ¢
have type char and ¢ is an array.

String pointers can be declared directly. For example, char* s;. Variable s can be assigned to
point to a string but no such assignment has been made yet. Variable s is said to be undefined.
References to s will likely cause an execution-time error.

A string pointer can be initialized. For example char* s="toy”; Storage for string “toy” is
allocated in the constant area of the program. The string “toy” cannot be changed. String s,
however, can be reassigned. Refer to figure 2.

char*

Figure 2. char* s="toy”;

Programming I
CS 1613

Operations:
#include <string>

C Strings
Lecture 20

Declaration

Description

Example

int strien(char* s);

Function strlen returns the number of
characters in the string referenced by
parameter s. The terminating
character is excluded from the count
returned by function strlen.

=%

char s[]="one”;
int c=strlen(s);
cout <<c¢;
Output

3

char* strcpy(char* d,char* s);

Function strcpy copies the contents of
the string s to the string d,
overwriting the contents of d. The
entire contests of s are copied, plus
the terminating null character even if
s is longer than d. The argument d is
returned.

char d[]="destinataion”;
char s[]="source”;
char* r=strepy(d,s);

cout << dj

Output

source

char* strcat(char* d,char® s);

Function strcat appends the contents
of string s to string d. A pointer to
string d is returned. The null
character that terminates d (and
perhaps other characters following it
in memory) is overwritten with
characters from s and a new
terminating null character.
Characters are copied from s until a
null character is encountered in s.
The memory beginning with d is
assumed to be large enough to hold
both strings.

char d[10]="One”;
char s[]=", two”;
char* r=strcat(d,s);
Ouput

One, two

int stremp(char*® u,char* v);

Function strcmp lexicographically
compares the contents of the null-
terminated string # with the contents
of the null-terminated string v. It
returns a value of type int that is less
than zero if u <Vv; equal zero if
u=v; and greater than zero if
u>v.

char u[]="ted”;
char v[]="tom”;
int c=strcmp(u,v);
cout <<c;

Ouput

-1

Table 1. Selected functions in library string.h. (#include <string>) continued

	Representation:
	Declaration:
	A C-string is declared as an array of characters. Examples are given below.
	char s[10];//s is an array of 10 characters having elements s[0] .. s[9].
	//s can hold up to 9 characters
	char t[]=”one”;//t is a string initialized to the
	char u[3]=”one”;// t is initialized to the charac
	//t is not a string.
	char v[]={‘o’,’n’,’e’,’\\0’};//v is a string hav
	char e[]=””;//e is a string having a single chara
	//e is the empty string
	Strings and pointers to strings:
	Strings are referenced by pointers to the actual
	When the name of an array appears without a subscripting operator [], the type of the array name is changed to a pointer to the element type. For example, t has type char* because elements of t have type char and t is an array.
	String pointers can be declared directly. For example, char* s;. Variable s can be assigned to point to a string but no such assignment has been made yet. Variable s is said to be undefined. References to s will likely cause an execution-time error.
	A string pointer can be initialized. For example
	�
	Figure 2. char* s=”toy”;
	Operations:
	Output
	Output

