
Programming I Arrays
CS 1613 Lecture 19

Arrays

If T is any C++ type except void or “function returning …,” the type “array of T” may be declared.
Values of this type are sequences of elements of type T. All arrays are 0-origin.

Example

int F[3]; //F is an array of type int. Array F has elements F[0], F[1], and F[2].

Figure 1. Program p01, an array of ten integers assigned values from a fibonacci sequence

#include <iostream>
using namespace std;
int main()
{ int F[10];
 F[0]=0;
 F[1]=1;
 for (int i=2;i<10;i++) F[i]=F[i-1]+F[i-2];
 for (int i=0;i<10;i++) cout << F[i] << " ";
 cout << endl;
 return 0;
}

Program p01 prints.
0 1 1 2 3 5 8 13 21 34

Program p01 notes.

1. Variable F is an array having ten (10) integer elements.
2. The first two elements, elements 0 and 1, F[0] and F[1] are initialized to the first two values

in a fibonacci sequence.
3. The first for-statement assigns fibonacci values to remaining elements of array F.
4. The second for-statement prints the fibonacci sequence.

 1

Programming I Arrays
CS 1613 Lecture 19

Multiple dimensions. Arrays can have multiple dimensions. For example.

double A[3][5]; //A is an array having three rows and five columns.

#include <iostream>
#include <ctime>
#include <cmath>
#include <iomanip>
using namespace std;
class Uniform {
public:
 Uniform()
 { time_t t;
 srand((unsigned)time(&t));
 }
 double Sample(void) {return (double)rand()/RAND_MAX;}
};

int main()
{ double A[3][5];
 Uniform U;
 for (int r=0;r<3;r++) {
 for (int c=0;c<5;c++) {
 A[r][c]=U.Sample();
 }
 }
 for (int r=0;r<3;r++) {
 cout << endl;
 for (int c=0;c<5;c++) {
 cout << setw(10) << fixed << setprecision(4) << A[r][c];
 }
 }
 cout << endl;
 return 0;
}

Figure 2. Program p02, a two-dimensional array having values taken from the uniform distribution.

Program p02 prints.

 0.3790 0.4577 0.3032 0.7310 0.4557
 0.5337 0.7066 0.1650 0.3751 0.2901
 0.6194 0.4795 0.5347 0.3802 0.8400

 2

Programming I Arrays
CS 1613 Lecture 19

Array initialization.

An array can be initialized by a list of values. For example:

int A[]={1, 2, 3, 4}; //Array A has four elements, A[0]==1,A[1]==2,A[2]==3, A[3]==4
char T[]={‘t’,’e’,’x’,’t’}; //Array T has four elements, T[0]==’t’,T[1]==’e’,T[2]==’x’,T[3]==’t’

When an array is declared without a specific size, but with an initializer list, the size is calculated by
counting the elements of the initializer list. Consequently A and T have an implied declaration of int
A[4]; and char T[4];

If a size is explicitly specified, it is an error to give surplus elements in an initializer.

double f[2]={1.602e-19,9.1095e-31,6.022e23}; //error; too many initializers

If the initializer has too few elements to completely fill the array, remaining elements are assigned a
value of zero. For example:

int v[8]={1, 2, 3, 4 };

is equivalent to

int v[8]={1, 2, 3, 4, 0, 0, 0, 0 };

Pointers are arrays.
The name of the array without a subscript is a pointer to the first element of the array. For example:

int A[]={5,2,1}; cout << *A; //5, the value of A[0] is printed

The address of an element of an array is computed by adding the subscript expression to the base of the
array, which is the array name. For example:

cout << A[1];

is equivalent to

cout << *(A+1)

Elements of an array can be referenced by separately declared pointers. For example:

int A[]={5,2,1,0,3}; //A is an array having five integer elements
int* p=A; //Integer pointer p points to A[0];
cout << *++p; //2, the value of A[1] is printed.
p=p+2; //p now points to A[3].
cout << *p; //0, the value of A[3] is printed

The foregoing example is illustrated in figure 3.

A

int

5

2

1

0

3

A[0]

A[1]

A[4]

A[3]

A[2]

p

int*

p

int*

p

int*

Figure 3. Array A and integer pointer p.

 3

Programming I Arrays
CS 1613 Lecture 19

 4

Arrays as parameters and arguments.
The name of the array is passed as an argument.

const int N=17;
int A[N];
ArrayInit(A,N);

The name of the array following by [] appears in the parameter declaration.

void ArrayInit(int A[],int N);

Since only the address of the first element is passed, it is a good idea to define a second parameter that
bounds the array. Integer parameter N contains the number of elements in the array.

Figure 4. Program p04, array parameters and arguments.

#include <iostream>
#include <iomanip>
#include <cmath>
using namespace std;
void ArrayInit(int A[],int N)
{ srand(29);
 for (int i=0;i<N;i++) A[i]=rand();
}
void ArrayPrint(int A[],int N)
{ for (int i=0;i<N;i++) {
 if (i%3==0) cout << endl;
 cout << setw(15) << A[i];
 }
 cout << endl;
}
int main()
{ const int N=17;
 int A[N];
 ArrayInit(A,N);
 ArrayPrint(A,N);
 return 0;
}

Program p04 prints.

 1881172855 991966287 1624772004
 564079445 1216093759 815928867
 955647895 1140828572 1784489259
 1988587541 1600840080 347140191
 220585252 2076303548 466324046
 1690747329 484526685

	Arrays
	Example

