Programming I
CS 1613

Precedence: Consider the following expression:

3+4*S§

Is the value of the expression (3 + 4)*5 =357

Or, is the value of the expression 3 + (4 * 5)=23?

Lecture 10

Precedence and Associativity

Multiplication has precedence over addition and, hence, the value of the expression 3 + 4 * 5=23.

The addition operator + and the multiplication operator * are binary operators: both operators require two
operands. The addition operator looks left and right for the nearest operands and finds 3 on the left and 4
on the right. Similarly, the multiplication operator looks left and right for the nearest operands and finds 4
on the left and 5 on the right. Operand 4 is in contention. Operand 4 is simultaneously the right operand of
the addition operator and the left operand of the multiplication operator. Both operators cannot be executed

simultaneously. One operation must be performed first.

operation is performed first and which operator is bound to operands in contention.

The rules of precedence determine which

Name Example Precedence | Associativity
names, literals id 1.602¢-19 “\n’ “tom™ 17 n/a
scope resolution class-name :: member 16 left
scope resolution namespace-name :: member 16 left
global :: name 16 right
global :: qualified-name 16 right
member selection object . member 15 left
member selection pointer -=> member 15 left
subscripting pointer [expr | 15 left
function call expr (_expr-list) 15 left
value construction type (expr-list) 15 left
post increment lvalue ++ 15 left
post decrement lvalue -- 15 left
type identification typeid (type) 15 left
run-time type identification typeid (expr) 15 left
compile-time checked conversion dynamic-cast < type > (.expr) 15 left
unchecked conversion reinterpret-cast < type > (.expr) 15 left
const conversion const-cast < type > (expr) 15 left
size of object sizeof expr 14 left
size of type sizeof (type) 14 left
pre increment ++ lvalue 14 right
pre decrement - lvalue 14 right
complement ~ expr 14 right
not ! expr 14 right
unary minus - expr 14 right
unary plus + expr 14 right
address of & lvalue 14 right
dereference * expre 14 right
create (allocate) new fype 14 right
create (allocate and initialize) new ftype (_expr-list) 14 right
create (place) new (expr-list) type 14 right
create (place and initialize) new (expr-list) type (_expr-list) 14 right
destroy (de-allocate) delete pointer 14 right
destroy array delete[] pointer 14 right
cast (type conversion) (type) expr 14 right
member selection object . * pointer-to-member 13 left

Programming I

Lecture 10

CS 1613 Precedence and Associativity
Name Example Precedence | Associativity
member selection pointer => * pointer-to-member 13 left
multiply expr * expr 12 left
divide expr | expr 12 left
modulo (remainder) expr % expr 12 left
add (plus) expr + expr 11 left
subtract (minus) expr - expr 11 left
shift left expr << expr 10 left
shift right expr >> expr 10 left
less than expr < expr 9 left
less than or equal expr <= expr 9 left
greater than expr > expr 9 left
greater than or equal expr >= expr 9 left
equal expr == expr 8 left
not equal expr = expr 8 left
bitwise AND expr & expr 7 left
bitwise exclusive OR expr ™ expr 6 left
bitwise inclusive OR expr | expr 5 left
conditional expression expr ? expr : expr 4 right
simple assignment Ivalue = expr 3 right
multiply and assign Ivalue *= expr 3 right
divide and assign Ivalue |= expr 3 right
modulo and assign Ivalue %= expr 3 right
add and assign Ivalue += expr 3 right
subtract and assign lvalue = expr 3 right
shift left and assign Ivalue <<= expr 3 right
shift right and assign lvalue >>= expr 3 right
AND and assign lvalue &= expr 3 right
inclusive OR and assign Ivalue |= expr 3 right
exclusive OR and assign Ivalue "= expr 3 right
throw exception throw expr 2 right
comma (sequencing) expr , expr 1 left

Associativity: When operators have the same precedence, associativity governs the order of evaluation.
For example, a + b + ¢ + d is evaluated ((a + b) +¢) + d. The addition operator associates to the left.
Correctly parenthesized expressions that coerce the order of operations of a left-associative operator

accumulate on the left.

Consider a=b=c=d. The expression a=b=c=d is evaluated a=(b=(c=d)). First d is assigned to ¢, then c is

assigned to b and, finally, b is assign to a. The assignment operators associate to the right.

