Programming | Lecture 7
CS 1613 Real Types

1. Definition:
Real types simulate real numbers. Real types are discrete whereas the set of real numbers is
continuous. Real types are called floating-point numbers. The density of floating-point numbers is
shown on a real number line in Figure 1.

Figure 1. Density of floating-point numbers.

Sets: Each set is dependent on its representation.

Sign(S)

1 bit 8 bits 23 bits

Characteristic

©) Fraction (F)

Little endian
bit position

0
22
23
30

31
Figure 2. IEEE-754 single binary floating-point representation used to implement type float.

23
R={reR|-1*x2°"xLF}se{0,c=1<c<254b=127,F = f, x2* f {00
k=1

Figure 3. Set R contains the numbers that can be produced by the IEEE-754 single binary floating-point
representation

24
R, = {r eR, [sx2°x > f, xzk},s e {-11}-126 <e<127,f, € {01}
k=0

Figure 4. Set R,

Set R, isequivalent to set R. Set R, is abstracted from set R.

Programming | Lecture 7
CS 1613 Real Types

Sign(S)
1 bit 11 bits 52 bits

Charac-

teristic (C) Fraction (F)))
Little endian

bit position
0

51

52

62

63
Figure 5. IEEE-754 double binary floating-point representation used to implement type double.

52
R={reR|-1"x2°" xLF}sc{0,c=1<c<2047b=1023,F = > f, x2°%, f, < {03
k=1
Figure 6. Set R contains the numbers that can be produced by the IEEE-754 single binary floating-point
representation

53
Rd — {r c Rf | S X 29 XZ fk X 27k }, Se {—1,1},—1022 <e £1023, fk S {0,1}
k=0

Figure 7. Set R,

Set R, is equivalent to set R. Set R is abstracted from set R.

Sign (S)
1 bit 15 bits 80 bits
—
Charac-
teristic Fraction(F) Little endian
C
© bit position
i L
79
80
94
95

Figure 8. IEEE-754 double extended binary floating-point representation used to implement type long
double.

80
R={reR|-1"x2°"xLF}se{0,c=1<c<32767b=16383, F =} f, x2™ f, {00
k=1
Figure 9. Set R contains the numbers that can be produced by the IEEE-754 single binary floating-point
representation

53
Ry = {r eR; [sx2°x > f, x z-k}, s e {-11},-1022 <e <1023, f, {01}
k=0

Figure 10. Set R,

Set Ry is equivalent to set R. Set Ry is abstracted from set R.

Programming | Lecture 7
CS 1613 Real Types

2. Declarations:
declarations:
real-declaration-list ;

real-declaration-list:
real-declaration
real-declaration-list , real-declaration

real-declaration:
real-declaration-specifier-sequence real-variable-name real-initialization

real-declaration-specifier-sequence:
real-declaration-specifier
real-declaration-specifier-sequence real-declaration-specifier

real-declaration-specifier:
storage-class-specifier
real-type-specifier

storage-class-specifier:
auto
register
static
extern

real type-specifier:
float
double
long double

real-variable-name:
identifier

real-initialization:
= assignment-expression
(assignment-expression)

Examples:
float f;
double d;
long double /d;

3. Constants:
Floating-point constants may be written with a decimal point, a signed exponent, or both. A floating-
point constant is always interpreted to be in decimal radix. C++ allows a suffix letter (floating-suffix)
to designate constants of types float, and long double. Without a suffix, the type of the constant is
double.

floating-constant:
digit-sequence exponent floating-suffix,,t

dotted-digits exponent,, floating-suffix,t

floating-suffix:

Programming |
CS 1613

fIF|I|L
exponent:

E sign-part,, digit-sequence
e sign-part,,; digit-sequence

sign-part:
+/ -

dotted-digits:
digit-sequence .

digit-sequence . digit-sequence

. digit-sequence

digit:

0]1]12|3]4|5]6]718]9

Lecture 7
Real Types

Examples:

Constant Type Description
0. double 0

3el double 30

3.14159 double T

.0 double 0

1.0E-3 double 0.001

le-3 double 0.001

1.0 double 1

.00034 double 3.4%x107*
2e+9 double 2,000,000,000
1.0f float 1

1.0e67L long double 1x10%
OE1L long double 0x10*

4. Operations: Operations on real types consist of the standard arithmetic operations of addition,

subtraction, multiplication, and division.
operations primarily on real types.

4.1. Standard arithmetic operations.

The <cmath> library also provides a rich set of useful

Operation Operator
Multiplication *
Division /
Addition +
Subtraction -
Less than <
Less than or equal <=
Greater than >
Greater than or equal >=

Equality
Inequality

Table 1. Real operations

Programming |

Lecture 7

CS 1613 Real Types
4.2. <cmath> library. Selected functions from the <cmath> library.
Declaration Description Example
int abs(int x); Function abs(x) returns the | int x=-5;
absolute value of its integer | cout << abs(x);
argument x. Output
5
long labs(long int x); Function labs(x) returns the | long int x=-5;
absolute value of its integer | cout << labs(x);
argument x. Output
5
double ceil(double x); Function ceil(x) returns the | double x=5.5;
smallest floating-point number | cout << ceil(x);
not less than x whose value is an | Output
exact mathematical integer. 6
double floor(double x); Function floor(x) returns the | double x=5.5;
largest floating-point number not | cout << floor(x);
greater than x whose value is an | Output
exact mathematical integer. 5
double pow(double b,double e); Function pow(b,e) returns be double b=2.0,e=5.0;
cout << pow(b,e);
Output
32
double sgrt(double x); Function sgrt(x) returns \/; double x=81.0;
cout << sqrt(x);
Output
9
int srand(unsigned seed); Function srand may be used to | Program p07 in Figure 9

initialize the pseudo-random
number generator that is used to
generate successive values for
calls to rand.

illustrates how samples from the
uniform distribution can be
generated. Functions srand and
rand are employed to initialize

and produce the uniform
distribution.
int rand(void); Successive calls to function rand | Program p07 in Figure 9

return integer values in the range
0 to the largest possible value of
type int that are the results of a
pseudo-random-number
generator.

illustrates how samples from the
uniform distribution can be
generated. Functions srand and
rand are employed to initialize
and produce the uniform
distribution.

Programming |
CS 1613

Lecture 7
Real Types

#include <iostream>
#include <iomanip>
#tinclude <cmath>
#include <ctime>
using namespace std;
int main()

{ time_tt

/1

srand((unsigned)time(&t)); //Seed rand using the time of day
for (int 0=0;0<10;a++) {
if (0%5==0) cout << endl;

/1

//Print random samples from the uniform distribution

}

cout << endl;
return 0;

cout << " " << fixed << setprecision(4) << (double)rand()/RAND_MAX;

Figure 9. Program pO07 illustrates the use of functions srand and rand.

0.1340 0.5934 0.0614 0.5062 0.5890
0.2081 0.1618 0.8826 0.1784 0.6333

Figure 10. Program p07 output1

! Program p07 produces different output each time it is invoked because the pseudo-random-number

generator seed is different.

The pseudo-random-number generator seed is different because it is an

unsigned integer representing the time of day.

Programming |
CS 1613

5.

Example programs.

Lecture 7
Real Types

5.1. Program p08 prints the amount by which the dollar is devalued for inflation rates of 3%, 5%, 7%,

and 9%. A ten-year period is printed.

#include <iostream>
#tinclude <iomanip>
using namespace std;
int main()
{ double w3=1.0,w5=1.0,w7=1.0,w9=1.0;
cout << endl;
cout << "Year";
cout << " " << setw(6) << "3%";
cout << " " << setw(6) << "5%";
cout << " " << setw(6) << "7%";
cout << " " << setw(6) << "9%";
for (int y=1;y<=10;y++) {
cout << endl;
cout << setw(4) << y;
cout << " " << fixed << setprecision(4) << w3;
cout << " " << fixed << setprecision(4) << w5;
cout << " " << fixed << setprecision(4) << w7;
cout << " " << fixed << setprecision(4) << w9;
w3*=1.03; w5*=1.05; w7*=1.07; w9*=1.09;

}

cout << end/;
return 0;

Figure 11. Program p08.

3% 5% 7% 9%
.0000 1.0000 1.0000 1.0000
.0300 1.0500 1.0700 1.0900
.0609 1.1025 1.1449 1.1881
.0927 1.1576 1.2250 1.2950
.1255 1.2155 1.3108 1.4116
.1593 1.2763 1.4026 1.5386
.1941 1.3401 1.5007 1.6771
.2299 1.4071 1.6058 1.8280
.2668 1.4775 1.7182 1.9926
.3048 1.5513 1.8385 2.1719

=<
o
QOWONOUDWNE=S

RPRRPRRPRRRERRRRR

[

Figure 12. Program p08 output

Programming |
CS 1613

Lecture 7
Real Types

5.2. Program p09 computes the future value of a sequence of fixed deposit in an interest bearing
account. The user is prompted for the monthly deposit, annual percentage on the account and

the term.

#tinclude <iostream>
#tinclude <iomanip>
ttinclude <cmath>
using namespace std;
int main()

{

cout << "Enter the monthly deposit. ";

double R;

cin >>R;

cout << "Enter the Annual Percentage Rate (APR) on the account. ";

double APR;

cin >> APR;

double i=APR/1200;

cout << "i=" << fixed << setprecision(6) << i;

cout << endl;

cout << "Enter the number of years in the term. ";

double y;

cin >>y;

int n=(int)floor(y*12+0.5);

cout << "n=" << n << endl;

double S=R*(pow(1+i,n)-1)/i;

cout << "The balance on the account after " << y << " years will be "
<< "$§" << fixed << setprecision(2) << S << ".";

cout << end/;

return 0;

Figure 13. Program p09.

Enter the monthly deposit. 100

Enter the Annual Percentage Rate (APR) on the account. 9

i=0.007500
Enter the number of years in the term. 20
n=240

The balance on the account after 20.000000 years will be $66788.69.

Figure 14. Program p09 output.

Programming | Lecture 7

CS 1613 Real Types

References:

1. Horstman and Budd; Big C++; Section 2.1, 2.2,2.3, 2.4

2. Stroustrup; The C++ Programming Language, 3" Ed. Section 4.5

Exercises:

1. Horstman and Budd; Big C++; p 70, R2.1

2. Horstman and Budd; Big C++; p 70, R2.2

3. Horstman and Budd; Big C++; p 70, R2.3

4. Write a program that given an initial distance , S, , and initial velocity, V,, a rate of acceleration, a,
and the amount of time a body was accelerated, t, will compute the distance from the origin.

1. Write a program that will find the roots of a second order polynomial. Horstman and Budd; Big C++; p

70,R2.1

	4. Operations: Operations on real types consist of the standard arithmetic operations of addition, subtraction, multiplication, and division. The <cmath> library also provides a rich set of useful operations primarily on real types.
	4.1. Standard arithmetic operations.
	4.2. <cmath> library. Selected functions from the <cmath> library.
	cout << abs(x);
	Output
	5
	cout << labs(x);
	Output
	5. Example programs.
	5.1. Program p08 prints the amount by which the dollar is devalued for inflation rates of 3%, 5%, 7%, and 9%. A ten-year period is printed.
	5.2. Program p09 computes the future value of a sequence of fixed deposit in an interest bearing account. The user is prompted for the monthly deposit, annual percentage on the account and the term.

