
Programming I Lecture 7
CS 1613 Real Types

 1

1. Definition:

Real types simulate real numbers. Real types are discrete whereas the set of real numbers is
continuous. Real types are called floating-point numbers. The density of floating-point numbers is
shown on a real number line in Figure 1.

0 n-n-2n-4n 2n 4n

Figure 1. Density of floating-point numbers.

Sets: Each set is dependent on its representation.

Fraction ()F

0

22

23

30

31

23 bits8 bits1 bit

Little endian
bit position

Sign()S

Characteristic
()C

Figure 2. IEEE-754 single binary floating-point representation used to implement type float.

{ } }1,0{,2,127,2541},1,0{,.121|
23

1
∈×==<≤=∈××−∈= −

=

− ∑ k
k

k
k

bcs ffFbccsFRrR

Figure 3. Set R contains the numbers that can be produced by the IEEE-754 single binary floating-point
representation

{ } { }1,0,127126,1,1,22|
24

0
∈≤≤−−∈









×××∈= ∑
=

−
k

k

k
k

e
ff fesfsRrR

Figure 4. Set fR

Set fR is equivalent to set R . Set fR is abstracted from set .R

Programming I Lecture 7
CS 1613 Real Types

 2

1 bit 11 bits 52 bits

Fraction ()F
Charac-

teristic ()C

Sign()S

0
51
52
62
63

Little endian
bit position

Figure 5. IEEE-754 double binary floating-point representation used to implement type double.

{ } }1,0{,2,102320471},1,0{,.121|
52

1
∈×==<≤=∈××−∈= −

=

− ∑ k
k

k
k

bcs ffFbccsFRrR

Figure 6. Set R contains the numbers that can be produced by the IEEE-754 single binary floating-point
representation

{ } { }1,0,10231022,1,1,22|
53

0
∈≤≤−−∈









×××∈= ∑
=

−
k

k

k
k

e
fd fesfsRrR

Figure 7. Set dR

Set dR is equivalent to set R . Set dR is abstracted from set .R

Charac-
teristic

()C Little endian
bit position

Fraction()F

15 bits1 bit 80 bits

Sign ()S

0
79
80

95
94

Figure 8. IEEE-754 double extended binary floating-point representation used to implement type long
double.

{ } }1,0{,2,383,16767,321},1,0{,.121|
80

1
∈×==<≤=∈××−∈= −

=

− ∑ k
k

k
k

bcs ffFbccsFRrR

 Figure 9. Set R contains the numbers that can be produced by the IEEE-754 single binary floating-point
representation

{ } { }1,0,10231022,1,1,22|
53

0
∈≤≤−−∈









×××∈= ∑
=

−
k

k

k
k

e
flf fesfsRrR

Figure 10. Set dR

Set lfR is equivalent to set R . Set lfR is abstracted from set .R

Programming I Lecture 7
CS 1613 Real Types

 3

2. Declarations:
declarations:

real-declaration-list ;

real-declaration-list:
real-declaration
real-declaration-list , real-declaration

real-declaration:
real-declaration-specifier-sequence real-variable-name real-initializationopt

real-declaration-specifier-sequence:

real-declaration-specifier
real-declaration-specifier-sequence real-declaration-specifier

real-declaration-specifier:

storage-class-specifier
real-type-specifier

storage-class-specifier:

auto
register
static
extern

real type-specifier:

float
double
long double

real-variable-name:
identifier

real-initialization:
= assignment-expression
(assignment-expression)

Examples:

float f;
double d;
long double ld;

3. Constants:

Floating-point constants may be written with a decimal point, a signed exponent, or both. A floating-
point constant is always interpreted to be in decimal radix. C++ allows a suffix letter (floating-suffix)
to designate constants of types float, and long double. Without a suffix, the type of the constant is
double.

floating-constant:

digit-sequence exponent floating-suffixopt
dotted-digits exponentopt floating-suffixopt

floating-suffix:

Programming I Lecture 7
CS 1613 Real Types

 4

f | F | l | L

exponent:
E sign-partopt digit-sequence
e sign-partopt digit-sequence

sign-part:
+ | -

dotted-digits:
digit-sequence .
digit-sequence . digit-sequence
. digit-sequence

 digit:

0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Examples:
Constant Type Description
0. double 0
3e1 double 30
3.14159 double π
.0 double 0
1.0E-3 double 0.001
1e-3 double 0.001
1.0 double 1
.00034 double 4104.3 −×
2e+9 double 2,000,000,000
1.0f float 1
1.0e67L long double 67101×
0E1L long double 1100×

4. Operations: Operations on real types consist of the standard arithmetic operations of addition,
subtraction, multiplication, and division. The <cmath> library also provides a rich set of useful
operations primarily on real types.
4.1. Standard arithmetic operations.

Operation Operator
Multiplication *

Division /
Addition +

Subtraction -
Less than <

Less than or equal <=
Greater than >

Greater than or equal >=
Equality ==

Inequality !=
Table 1. Real operations

Programming I Lecture 7
CS 1613 Real Types

 5

4.2. <cmath> library. Selected functions from the <cmath> library.
Declaration Description Example
int abs(int x); Function abs(x) returns the

absolute value of its integer
argument x.

int x=-5;
cout << abs(x);
Output
5

long labs(long int x); Function labs(x) returns the
absolute value of its integer
argument x.

long int x=-5;
cout << labs(x);
Output
5

double ceil(double x); Function ceil(x) returns the
smallest floating-point number
not less than x whose value is an
exact mathematical integer.

double x=5.5;
cout << ceil(x);
Output
6

double floor(double x); Function floor(x) returns the
largest floating-point number not
greater than x whose value is an
exact mathematical integer.

double x=5.5;
cout << floor(x);
Output
5

double pow(double b,double e); Function pow(b,e) returns eb double b=2.0,e=5.0;
cout << pow(b,e);
Output
32

double sqrt(double x); Function sqrt(x) returns x double x=81.0;
cout << sqrt(x);
Output
9

int srand(unsigned seed); Function srand may be used to
initialize the pseudo-random
number generator that is used to
generate successive values for
calls to rand.

Program p07 in Figure 9
illustrates how samples from the
uniform distribution can be
generated. Functions srand and
rand are employed to initialize
and produce the uniform
distribution.

int rand(void); Successive calls to function rand
return integer values in the range
0 to the largest possible value of
type int that are the results of a
pseudo-random-number
generator.

Program p07 in Figure 9
illustrates how samples from the
uniform distribution can be
generated. Functions srand and
rand are employed to initialize
and produce the uniform
distribution.

Programming I Lecture 7
CS 1613 Real Types

 6

Figure 9. Program p07 illustrates the use of functions srand and rand.

Figure 10. Program p07 output1

1 Program p07 produces different output each time it is invoked because the pseudo-random-number
generator seed is different. The pseudo-random-number generator seed is different because it is an
unsigned integer representing the time of day.

#include <iostream>
#include <iomanip>
#include <cmath>
#include <ctime>
using namespace std;
int main()
{ time_t t;
 srand((unsigned)time(&t)); //Seed rand using the time of day
 for (int a=0;a<10;a++) {
 if (a%5==0) cout << endl;
 //--
 //Print random samples from the uniform distribution
 //--
 cout << " " << fixed << setprecision(4) << (double)rand()/RAND_MAX;
 }
 cout << endl;
 return 0;
}

 0.1340 0.5934 0.0614 0.5062 0.5890
 0.2081 0.1618 0.8826 0.1784 0.6333

Programming I Lecture 7
CS 1613 Real Types

 7

5. Example programs.
5.1. Program p08 prints the amount by which the dollar is devalued for inflation rates of 3%, 5%, 7%,

and 9%. A ten-year period is printed.

Figure 11. Program p08.

Figure 12. Program p08 output

#include <iostream>
#include <iomanip>
using namespace std;
int main()
{ double w3=1.0,w5=1.0,w7=1.0,w9=1.0;
 cout << endl;
 cout << "Year";
 cout << " " << setw(6) << "3%";
 cout << " " << setw(6) << "5%";
 cout << " " << setw(6) << "7%";
 cout << " " << setw(6) << "9%";
 for (int y=1;y<=10;y++) {
 cout << endl;
 cout << setw(4) << y;
 cout << " " << fixed << setprecision(4) << w3;
 cout << " " << fixed << setprecision(4) << w5;
 cout << " " << fixed << setprecision(4) << w7;
 cout << " " << fixed << setprecision(4) << w9;
 w3*=1.03; w5*=1.05; w7*=1.07; w9*=1.09;
 }
 cout << endl;
 return 0;
}

Year 3% 5% 7% 9%
 1 1.0000 1.0000 1.0000 1.0000
 2 1.0300 1.0500 1.0700 1.0900
 3 1.0609 1.1025 1.1449 1.1881
 4 1.0927 1.1576 1.2250 1.2950
 5 1.1255 1.2155 1.3108 1.4116
 6 1.1593 1.2763 1.4026 1.5386
 7 1.1941 1.3401 1.5007 1.6771
 8 1.2299 1.4071 1.6058 1.8280
 9 1.2668 1.4775 1.7182 1.9926
 10 1.3048 1.5513 1.8385 2.1719

Programming I Lecture 7
CS 1613 Real Types

 8

5.2. Program p09 computes the future value of a sequence of fixed deposit in an interest bearing
account. The user is prompted for the monthly deposit, annual percentage on the account and
the term.

Figure 13. Program p09.

Figure 14. Program p09 output.

#include <iostream>
#include <iomanip>
#include <cmath>
using namespace std;
int main()
{ cout << "Enter the monthly deposit. ";
 double R;
 cin >> R;
 cout << "Enter the Annual Percentage Rate (APR) on the account. ";
 double APR;
 cin >> APR;
 double i=APR/1200;
 cout << "i=" << fixed << setprecision(6) << i;
 cout << endl;
 cout << "Enter the number of years in the term. ";
 double y;
 cin >> y;
 int n=(int)floor(y*12+0.5);
 cout << "n=" << n << endl;
 double S=R*(pow(1+i,n)-1)/i;
 cout << "The balance on the account after " << y << " years will be "
 << "$" << fixed << setprecision(2) << S << ".";
 cout << endl;
 return 0;
}

Enter the monthly deposit. 100
Enter the Annual Percentage Rate (APR) on the account. 9
i=0.007500
Enter the number of years in the term. 20
n=240
The balance on the account after 20.000000 years will be $66788.69.

Programming I Lecture 7
CS 1613 Real Types

 9

References:
1. Horstman and Budd; Big C++; Section 2.1, 2.2, 2.3, 2.4
2. Stroustrup; The C++ Programming Language, 3rd Ed. Section 4.5

Exercises:
1. Horstman and Budd; Big C++; p 70, R2.1
2. Horstman and Budd; Big C++; p 70, R2.2
3. Horstman and Budd; Big C++; p 70, R2.3

4. Write a program that given an initial distance , 0s , and initial velocity, 0v , a rate of acceleration, a ,

and the amount of time a body was accelerated, t , will compute the distance from the origin.
1. Write a program that will find the roots of a second order polynomial. Horstman and Budd; Big C++; p

70, R2.1

	4. Operations: Operations on real types consist of the standard arithmetic operations of addition, subtraction, multiplication, and division. The <cmath> library also provides a rich set of useful operations primarily on real types.
	4.1. Standard arithmetic operations.
	4.2. <cmath> library. Selected functions from the <cmath> library.
	cout << abs(x);
	Output
	5
	cout << labs(x);
	Output
	5. Example programs.
	5.1. Program p08 prints the amount by which the dollar is devalued for inflation rates of 3%, 5%, 7%, and 9%. A ten-year period is printed.
	5.2. Program p09 computes the future value of a sequence of fixed deposit in an interest bearing account. The user is prompted for the monthly deposit, annual percentage on the account and the term.

