
Programming I Lecture 7
CS 1613 Integer Types

 1

1. Definition: An integer is a number without a fractional part. The set of integers is the union of the
set of whole numbers and the set of negative counting numbers.
1.1. Integers and whole numbers. C++ implements both integers (signed) and whole numbers

(unsigned). Integers are the default thereby making the type-specifier signed optional.
1.2. Ranges: The range of values a particular integer variable can take on is limited by the number of

bits allocated to that variable. The type-specifiers char, short, int, and long define the relative
range of values that a variable of that type can take on. char ≤ short ≤ int ≤ long

1.3. Implementation: Integers are implemented as two’s complement binary integers. Whole
numbers are implemented as unsigned binary integers. Several field widths (w) are common
including 8, 16, and 32 bits.
1.3.1.Integers: Let I be the set of integers.

𝑰 = {𝒊 ∈ 𝑰|−𝟐𝒔−𝟏 ≤ 𝒊 ≤ 𝟐𝒔−𝟏, 𝐬 ∈ {𝟖, 𝟏𝟔, 𝟑𝟐, 𝟔𝟒}}
1.3.1.1. An 8-bit integer c ranges from 122 77 −≤≤− c or 127128 ≤≤− c

1.3.1.2. A 16-bit integer s ranges from 122 1515 −≤≤− s or 767,32768,32 ≤≤− s

1.3.1.3. A 32-bit integer i ranges from 122 3131 −≤≤− i or
647,483,147,2648,483,147,2 ≤≤− i

1.3.1.4. A 64-bit integer s ranges from −263 ≤ 𝑠 ≤ 263

1.3.2. Whole numbers: Let U be the set of whole numbers.

 }}32,16,8{,120|{ ∈−≤≤∈= suUuU s

1.3.2.1. An 8-bit whole number c ranges from 120 8 −≤≤ c or 2550 ≤≤ c

1.3.2.2. A 16-bit integer s ranges from 120 16 −≤≤ s or 535,650 ≤≤ s

1.3.2.3. A 32-bit integer i ranges from 120 32 −≤≤ i or 296,967,294,40 ≤≤ i

1.4. Integers and whole numbers. The relationship between integers and whole numbers for a given
size is shown in Figure 1.

 Figure 1. Signed and unsigned integer values

2. Representation: Implementation: Integers are implemented as two’s complement binary integers.

Whole numbers are implemented as unsigned binary integers. Several field widths (w) are common
including 8, 16, and 32 bits.

unsigned integer

signed integer

0-2n -2n-1 2 n-1-1 2n-1

Programming I Lecture 7
CS 1613 Integer Types

 2

8 bits

01234567

unsigned char =5;uc
Figure 2. 8-bit whole number representation.

8 bits

01234567

char =-5;sc
Figure 3. 8-bit integer representation.

0123456789101112131415

16 bits

unsigned short =10;us
Figure 4. 16-bit whole number representation.

0123456789101112131415

16 bits

short =-10;ss
Figure 5. 16-bit integer representation.

Programming I Lecture 7
CS 1613 Integer Types

 3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

32 bits

unsigned int =12;ui
Figure 6. 32-bit whole number representation.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

32 bits

int =-12;si
Figure 7. 32-bit integer representation.

3. Declaration syntax:
declarations:

integer-declaration-list ;

integer-declaration-list:
integer-declaration
integer-declaration-list , integer-declaration

integer-declaration:
integer-declaration-specifier-sequence integer-variable-name integer-initializationopt

integer-declaration-specifier-sequence:

integer-declaration-specifier
integer-declaration-specifier-sequence integer-declaration-specifier

integer-declaration-specifier:

storage-class-specifier
integer-type-specifier

storage-class-specifier:

auto
register
static
extern

integer type-specifier:

char
wchar_t
short
int
long
signed

Programming I Lecture 7
CS 1613 Integer Types

 4

unsigned

integer-variable-name:
identifier

integer-initialization:
= assignment-expression
(assignment-expression)

3.1. Examples:
unsigned char uc;
unsigned char uc1, uc2;
unsigned char uc=12;
unsigned char uc(12);
unsigned char uc1=12,uc2=14;
unsigned char uc1(12),uc2(14);
char uc;
char uc1, uc2;
char uc=12;
char uc(12);
char uc1=12,uc2=14;
char uc1(12),uc2(14);

unsigned short us;
unsigned short us1, us2;
unsigned short us=12;
unsigned short us(12);
unsigned short us1=12,us2=14;
unsigned short us1(12),us2(14);
short ss;
short ss1, ss2;
short ss=12;
short ss(12);
short ss1=12,ss2=14;
short ss1(12),ss2(14);

unsigned int ui;
unsigned int ui1, ui2;
unsigned int ui=12;
unsigned int ui(12);
unsigned int ui1=12,ui2=14;
unsigned int ui1(12),ui2(14);
int si;
int si1, si2;
int si=12;
int si(12);
int si1=12,si2=14;
int si1(12),si2(14);

unsigned long ul;
unsigned long ul1, ul2;
unsigned long ul=12;
unsigned long ul(12);
unsigned long ul1=12,ul2=14;

Programming I Lecture 7
CS 1613 Integer Types

 5

unsigned long ul1(12),ul2(14);
long sl;
long sl1, sl2;
long sl=12;
long sl(12);
long sl1=12,sl2=14;
long sl1(12),sl2(14);

4. Integer constant syntax:
integer-constants:

decimal-constant integer-suffixopt
octal-constant integer-suffixopt
hexidecimal-constant integer-suffixopt

decimal-constant:
nonzero-digit
decimal-constant digit

octal-constal:

0
octal-constant octal-digit

hexadecimal-constant

0x hex-digit
hexadecimal-constant hex-digit

digit: one of
0 1 2 3 4 5 6 7 8 9

octal-digit: one of
0 1 2 3 4 5 6 7

hexadecimal-digit: one of
0 1 2 3 4 5 6 7 8 9

A B C D E F a b c d e f

integer-suffix:
 long-suffix unsigned-suffixopt
 unsigned-suffix long--suffixopt

long-suffix: one of

l L

unsigned-suffix: one of
u U

Programming I Lecture 7
CS 1613 Integer Types

 6

Constant C++ type
dd…d int
0dd…d int
0xdd…d unsigned int
dd…dU unsigned int
0dd…dU unsigned int
0xdd…dU unsigned int
dd…dL long int
0dd…dL unsigned long int
0xdd…dL unsigned long int
dd…dUL unsigned long int
0dd…dUL unsigned long int
0xdd…dUL unsigned long int

Examples:
C Constant C++ Type Decimal Value
0 int 0
0L long int 0
0UL unsigned long int 0
0xA unsigned int 10
0xFFL unsigned long int 255
017 unsigned int 15

5. Operations: The C++ programming language provides more integer types and operators that do most

programming languages. The variety reflects the different word lengths and kinds of arithmetic
operators found on most computers, thus allowing a close correspondence between C++ programs
and the underlying hardware. Integer types in C and C++ are used to represent:
5.1. signed or unsigned integer values, for which the usual arithmetic and relational operations are

provided
5.2. bit vectors, with the operations NOT, AND, OR, XOR, and left and right shifts
5.3. Boolean values, for which zero is considered "false", and all nonzero values are considered

"true," with the integer 1 being the canonical "true" value
5.4. characters, which are represented by their integer encoding on the computer

Programming I Lecture 7
CS 1613 Integer Types

 7

Table 1 records operations and corresponding operators valid for signed and unsigned integers of all sizes.
The usual unary conversions coerce chars and shorts to ints.

Operation Operator
Predecrement --
Preincrement ++

Postdecrement --
Postincrement --
Multiplication *

Division /
Modulo (Remainder) %

Addition +
Subtraction -

Left logical shift <<
Right logical shift >>

Less than <
Less than or equal <=

Greater than >
Greater than or equal >=

Equality ==
Inequality !=

bitwise-and &
bitwise-exclusive or ^

bitwise-or |
logical-and &&
logical-or ||

Table 1. Integer operations

Table 2 records the precedence and associativity of integer operators.

Operators Precedence Associativity
-- ++ (postfix) 17 left
-- ++ (prefix) 15 right

* / % 13 left
+ - 12 left

<< >> 11 left
< > <= >= 10 left

== != 9 left
& 8 left
^ 7 left
| 6 left

&& 5 left
|| 4 left

Table 2. Precedence and associativity of binary integer operators

Programming I Lecture 7
CS 1613 Integer Types

 8

6. Example programs:

6.1. Program p01 illustrates the predecrement operation.

Figure 6.1. Program p01.

6.1.1. Program p01 output.

a = 0
--a=-1
a =-1

6.1.2. cout << --a; is equivalent to a=a-1; cout << a;

6.2. Program p02 illustrates the preincrement operation.

Figure 6.2. Program p02.

#include <iostream>
#include <iomanip>
using namespace std;
int main()
{ int a=0;
 cout << "a =" << setw(2) << a << endl;
 cout << "--a=" << setw(2) << --a << endl;
 cout << "a =" << setw(2) << a << endl;
 return 0;
}

#include <iostream>
#include <iomanip>
using namespace std;
int main()
{ int a=0;
 cout << "a =" << setw(2) << a << endl;
 cout << "--a=" << setw(2) << ++a << endl;
 cout << "a =" << setw(2) << a << endl;
 return 0;
}

Programming I Lecture 7
CS 1613 Integer Types

 9

6.2.1. Program p02 output.
a = 0
++a= 1
a = 1

6.2.2. cout << ++a; is equivalent to a=a+1; cout << a;

6.3. Program p03 illustrates the postdecrement operation.

Figure 6.3. Program p03.

6.3.1. Program p03 output.

a = 0
a--= 0
a =-1

6.3.2. cout << a--; is equivalent to cout << a; a=a-1;

6.4. Program p04 illustrates the postincrement operation.

Figure 6.4. Program p04.

6.4.1. Program p04 output.

a = 0
a++= 0
a = 1

6.4.2. cout << a++; is equivalent to cout << a; a=a+1;

#include <iostream>
#include <iomanip>
using namespace std;
int main()
{ int a=0;
 cout << "a =" << setw(2) << a << endl;
 cout << "a--=" << setw(2) << a-- << endl;
 cout << "a =" << setw(2) << a << endl;
 return 0;
}

#include <iostream>
#include <iomanip>
using namespace std;
int main()
{ int a=0;
 cout << "a =" << setw(2) << a << endl;
 cout << "a++=" << setw(2) << a++ << endl;
 cout << "a =" << setw(2) << a << endl;
 return 0;
}

Programming I Lecture 7
CS 1613 Integer Types

 10

6.5. Program p05 illustrates addition, subtraction, multiplication, and division.

Figure 6.5. Program p05.

6.5.1. Program p05 output.

10+5*2-1-13/5=17
6.5.2. Multiplication and division have higher precedence than addition and subtraction.
6.5.3. Operations are evaluated from left to right.
6.5.4. Since both operands (13,5) of the division operator (/) are integers, the quotient is also

an integer. The quotient of 13/5 is 2.

6.6. Program p06 illustrates integer division and the C++ operator that produces the remainder
when one integer is divided by another.

Figure 6.6. Program p06.

#include <iostream>
#include <iomanip>
using namespace std;
int main()
{ int a=10,b=5,c=2,d=1,e=13,f=5;
 cout << a << "+"
 << b << "*"
 << c << "-"
 << d << "-"
 << e << "/"
 << f << "="
 << a+b*c-d-e/f;
 cout << endl;

return 0;
}

#include <iostream>
#include <iomanip>
using namespace std;
int main()
{ for (int dividend=-10;dividend<10;dividend++) {
 int divisor=5;
 cout << endl;
 cout << setw(3) << dividend << "/"
 << setw(3) << divisor << "="
 << setw(3) << dividend/divisor << " "
 << setw(3) << dividend << "%"
 << setw(3) << divisor << "="
 << setw(3) << dividend%divisor ;
 }
 cout << endl;
 return 0;
}

Programming I Lecture 7
CS 1613 Integer Types

 11

6.6.1. Program p06 output.
-10/ 5= -2 -10% 5= 0
 -9/ 5= -1 -9% 5= -4
 -8/ 5= -1 -8% 5= -3
 -7/ 5= -1 -7% 5= -2
 -6/ 5= -1 -6% 5= -1
 -5/ 5= -1 -5% 5= 0
 -4/ 5= 0 -4% 5= -4
 -3/ 5= 0 -3% 5= -3
 -2/ 5= 0 -2% 5= -2
 -1/ 5= 0 -1% 5= -1
 0/ 5= 0 0% 5= 0
 1/ 5= 0 1% 5= 1
 2/ 5= 0 2% 5= 2
 3/ 5= 0 3% 5= 3
 4/ 5= 0 4% 5= 4
 5/ 5= 1 5% 5= 0
 6/ 5= 1 6% 5= 1
 7/ 5= 1 7% 5= 2
 8/ 5= 1 8% 5= 3
 9/ 5= 1 9% 5= 4

6.6.2. The “/” operator performs integer division. For example –9/5=-1. Performing ordinary
division and truncating the fractional portion of the result is a method for finding the
quotient of integer division.

6.6.3. The “%” operator finds the remainder.

6.7. Program p06 determines the value of n for the computer on which the program executes.

Figure 12. File p06.cpp
Program p06 prints
size of char =8 bits
size of short =16 bits
size of int =32 bits
size of long =32 bits

#include <iostream>
using namespace std;
int main()
{ signed char a;
 signed short b;
 signed int c;
 signed long d;
 cout << “size of char =” << (8*sizeof a) << “ bits” << endl;
 cout << “size of short =” << (8*sizeof b) << “ bits” << endl;
 cout << “size of int =” << (8*sizeof c) << “ bits” << endl;
 cout << “size of long =” << (8*sizeof d) << “ bits” << endl;

return 0;
}

Programming I Lecture 7
CS 1613 Integer Types

 12

6.8. Program p07 prints minimum and maximum values for signed integers of various sizes.

Figure 13. File p07.cpp
Program p07 prints
A signed char ranges from -128 and 127
A signed short ranges from -32768 and 32767
A signed int ranges from -2147483648 and 2147483647
A signed long ranges from -2147483648 and 2147483647

Notes:
1. The range for a signed long should be -2147483648 (-231) and 2147483647 (231-1).
2. Function pow returns be given pow(b,e)

6.9. Program p08 prints minimum and maximum values for unsigned integers of various sizes.

Figure 14. File p08.cpp
Program p08 prints
An unsigned char ranges between 0 and 255.
An unsigned short ranges between 0 and 65535.
An unsigned int ranges between 0 and 4294967295.
An unsigned long ranges between 0 and 4294967295.

#include <iostream>
#include <math.h>
using namespace std;
int main()
{ signed char lsc=-pow(2,7), hsc=pow(2,7)-1;
 signed short lss=-pow(2,15), hss=pow(2,15)-1;
 signed int lsi=-pow(2,31), hsi=pow(2,31)-1;
 signed long lsl=-pow(2,31), hsl=pow(2,31)-1;
 cout << "A signed char ranges from " << (int)lsc << " and " << (int)hsc << endl;
 cout << "A signed short ranges from " << lss << " and " << hss << endl;
 cout << "A signed int ranges from " << lsi << " and " << hsi << endl;
 cout << "A signed long ranges from " << lsl << " and " << hsl << endl;
 return 0;
}

#include <iostream>
#include <math.h>
using namespace std;
int main()
{ unsigned char lsc=0, hsc=0xFF;
 unsigned short lss=0, hss=0xFFFF;
 unsigned int lsi=0, hsi=0xFFFFFFFF;
 unsigned long lsl=0, hsl=0xFFFFFFFF;
 cout << "An unsigned char ranges between " << (int)lsc << " and " ;

cout << (int)hsc << "." << endl;
 cout << "An unsigned short ranges between " << lss << " and " << hss << "." << endl;
 cout << "An unsigned int ranges between " << lsi << " and " << hsi << "." << endl;
 cout << "An unsigned long ranges between " << lsl << " and " << hsl << "." << endl;
 return 0;
}

Programming I Lecture 7
CS 1613 Integer Types

 13

Notes:
1. Integer variables can be initialized using hexadecimal values.

6.10. Program p09 illustrates the relationship between integers and characters.

Figure 15. File p09.cpp
Program p09 prints:
The integer code for the letter a is 97.
The integer code for the letter z is 122.

6.11. Program p10 illustrates the relationship between integers and Boolean values. Zero is "false"
and any nonzero value is "true" with one (1) being the canonical value for "true."

Figure 16. File p10.cpp

#include <iostream>
using namespace std;
int islower(char c)
{ return 'a' <= c && c <= 'z';
}
int main()
{ int a='a';
 cout << "Variable a does" ;
 if (!islower(a)) cout << " not";
 cout << " contain a lower case letter." << endl;
 return 0;
}

#include <iostream>
using namespace std;
int main()
{ char a='a',z='z';
 cout << "The integer code for the letter" << a << " is " << (int)a << ".";
 cout << endl;
 cout << "The integer code for the letter" << z << " is " << (int)z << ".";
 cout << endl;
 return 0;
}

Programming I Lecture 7
CS 1613 Integer Types

 14

Program p10 prints:
Variable a does contain a lower case letter.

Notes:
1. Function islower returns either a 1 or a 0 depending on whether the expression 'a' <= c && c <= 'z' is

"true" or "false."
2. The logical-and operator && has lower precedence than relational operators.

Left logical shift.
The left logical shift operator << inserts a 0 in the least significant bit position and moves every bit one
position to the left to bit having the next higher significance. The most significant bit is discarded. The
effect of shifting an integer variable one position to the left is equivalent to multiplying it by 2.

Declaration Expression Binary
Representation

Binary
Result

Integer
Result

char a=1; a<<1 0000 0001<<1 0000 0010 2
char a=1; a<<2 0000 0001<<2 0000 0100 4
char a=1; a<<3 0000 0001<<3 0000 1000 8
char a=1; a<<4 0000 0001<<4 0001 0000 16
char a=3; a<<1 0000 0011<<1 0000 0110 6

Table 3. Left logical shift examples

Right logical shift.
The right logical shift operator >> inserts a 0 in the most significant bit position and moves every bit one
position to the right to bit having the next lower significance. The least significant bit is discarded. The
effect of shifting an integer variable one position to the left is equivalent to dividing it by 2.

Declaration Expression Binary
Representation

Binary
Result

Integer
Result

char a=2; a>>1 0000 0010>>1 0000 0001 1
char a=4; a>>2 0000 0100>>2 0000 0001 1
char a=8; a>>3 0000 1000>>3 0000 0001 1

char a=16; a>>4 0001 0000>>4 0000 0001 1
char a=7; a>>1 0000 0111>>1 0000 0011 3

Table 4. Left logical shift examples

Programming I Lecture 7
CS 1613 Integer Types

 15

Bitwise-and (&)
The bitwise-and (&) operator compares corresponding bits in the two operands. If both bits are equal to
one (1) the result is one (1). If either bit is a zero (0), the result is zero (0). The diagram in Figure 7
specifies the bitwise-and operation. All values that can be assigned to one-bit operands are listed. Two
one-bit operands are shown. Results are tabulated in the interior of the diagram.

Figure 7. Bitwise-and (&) operation

Examples of the bitwise-and (&) operation are shown in Table 5.

Declaration Expression Binary
Representation

Binary
Result

Integer
Result

char a=0x55;
char b=0x0f;

a&b a=0101 0101
b=0000 1111

0000 0101 5

Table 5. Bitwise-and (&) examples

Bitwise-exclusive-or (^)
The bitwise-exclusive-or (^) operator compares corresponding bits in the two operands. If the bits in both
operands are different, the result is one (1). If both bits are equal, the result is zero (0). The diagram in
Figure 8 specifies the bitwise-exclusive-or operation. All values that can be assigned to one-bit operands
are listed. Two one-bit operands are shown. Results are tabulated in the interior of the diagram.

Figure 8. Bitwise-exclusive-or (^) operation

Examples of the bitwise-exclusive-or (^) operation are shown in Table 6.

Declaration Expression Binary
Representation

Binary
Result

Integer
Result

char a=0x55;
char b=0x0f;

a^b a=0101 0101
b=0000 1111

0101 1010 90

Table 6. Bitwise-exclusive-or (^) examples

Bitwise-inclusive-or (|)

&

0 1

0

1

0 0

0 1

0

1

0 1

0

01

1

^

Programming I Lecture 7
CS 1613 Integer Types

 16

The bitwise-inclusive-or (|) operator compares corresponding bits in the two operands. If either operand
is a one (1), the result is one (1). If both operands are zero (0), the result is zero (0). The diagram in
Figure 9 specifies the bitwise-inclusive-or operation. All values that can be assigned to one-bit operands
are listed. Two one-bit operands are shown. Results are tabulated in the interior of the diagram.

Figure 9. Bitwise-inclusive-or (|) operation
Examples of the bitwise-inclusive-or (^) operation are shown in Table 7.

Declaration Expression Binary
Representation

Binary
Result

Integer
Result

char a=0x55;
char b=0x0f;

a|b a=0101 0101
b=0000 1111

0101 1111 95

Table 7. Bitwise-inclusive-or (|) examples

References:

1. Stroustrup: p 73-74,78-85
2. Harbison and Steele A Reference Manual Prentice Hall 1995 ISBN 0-13-326224-3; p24-27, 110-

114, 210-216
3. Horstman and Budd; Big C++; p 35, 39-40, 43, 48, 56-57, 59-62

Exercises:
1. Horstman and Budd; Big C++; p 73 Exercise P2.1
2. Horstman and Budd; Big C++; p 73 Exercise P2.2
3. Horstman and Budd; Big C++; p 73 Exercise P2.3
4. Horstman and Budd; Big C++; p 73 Exercise P2.4
5. Horstman and Budd; Big C++; p 73 Exercise P2.5
6. Horstman and Budd; Big C++; p 73 Exercise P2.6
7. Write a program that will initialize an integer variable to 0, insert a single bit in the least significant

position, shift the bit through all the bit positions in the variable, and print the integer value at each
position.

8. Write a program that will insert and 3-bit value in bit positions 3, 4, and 5 of another integer variable.

|

0 1

0

1

0 1

1 1

	1. Definition: An integer is a number without a fractional part. The set of integers is the union of the set of whole numbers and the set of negative counting numbers.
	1.1. Integers and whole numbers. C++ implements both integers (signed) and whole numbers (unsigned). Integers are the default thereby making the type-specifier signed optional.
	1.2. Ranges: The range of values a particular integer variable can take on is limited by the number of bits allocated to that variable. The type-specifiers char, short, int, and long define the relative range of values that a variable of that type can ta
	1.3. Implementation: Integers are implemented as two’s complement binary integers. Whole numbers are implemented as unsigned binary integers. Several field widths (w) are common including 8, 16, and 32 bits.
	1.3.1. Integers: Let be the set of integers.
	𝑰={𝒊∈𝑰|,−𝟐-𝒔−𝟏.≤𝒊≤,𝟐-𝒔−𝟏.,𝐬∈,𝟖,𝟏𝟔,𝟑𝟐,𝟔𝟒.}
	1.3.1.1. An 8-bit integer ranges from or
	1.3.1.2. A 16-bit integer ranges from or
	1.3.1.3. A 32-bit integer ranges from or
	1.3.1.4. A 64-bit integer ranges from −,2-63.≤𝑠≤,2-63.
	1.3.2. Whole numbers: Let be the set of whole numbers.
	1.3.2.1. An 8-bit whole number ranges from or
	1.3.2.2. A 16-bit integer ranges from or
	1.3.2.3. A 32-bit integer ranges from or
	1.4. Integers and whole numbers. The relationship between integers and whole numbers for a given size is shown in Figure 1.
	2. Representation: Implementation: Integers are implemented as two’s complement binary integers. Whole numbers are implemented as unsigned binary integers. Several field widths (w) are common including 8, 16, and 32 bits.
	3. Declaration syntax:
	3.1. Examples:
	4. Integer constant syntax:
	A B C D E F a b c d e f
	int
	Declaration

	0
	5. Operations: The C++ programming language provides more integer types and operators that do most programming languages. The variety reflects the different word lengths and kinds of arithmetic operators found on most computers, thus allowing a close cor�
	6. Example programs:

