Beginning Programming (Java) Lecture 10
CMSC 1513 Precedence and Associativity

Precedence: Consider the following expression:
3+4*5

Is the value of the expression (3 + 4)*5 =35?

Or, is the value of the expression 3 + (4 * 5)=23?

Multiplication has precedence over addition and, hence, the value of the expression 3 + 4 *
5=23.

The addition operator + and the multiplication operator * are binary operators: both operators
require two operands. The addition operator looks left and right for the nearest operands and
finds 3 on the left and 4 on the right. Similarly, the multiplication operator looks left and right
for the nearest operands and finds 4 on the left and 5 on the right. Operand 4 is in contention.
Operand 4 is simultaneously the right operand of the addition operator and the left operand of
the multiplication operator. Both operators cannot be executed simultaneously. One operation
must be performed first. The rules of precedence determine which operation is performed first
and which operator is bound to operands in contention.

Associativity: When operators have the same precedence, associativity governs the order of
evaluation. For example, a + b + ¢ + d is evaluated ((a + b) +c) + d. The addition operator
associates to the left. Correctly parenthesized expressions that coerce the order of operations
of a left-associative operator accumulate on the left.

Consider a=b=c=d. The expression a=b=c=d is evaluated a=(b=(c=d)). First d is assigned to c,
then c is assigned to b and, finally, b is assign to a. The assignment operators associate to the
right.

Beginning Programming (Java)

Lecture 10

CMSC 1513 Precedence and Associativity
11 L +, - number, number addition, subtraction
+ string, any string concatenation
10 L << integer, integer left shift
>> integer, integer right shift with sign
extension
>>> integer, integer right shift with zero
extension
9 L <, <= number, number less than, less than or equal
to
>, >= number, number greater than, greater than or
equal to
instanceof reference, type type comparison
8 L = primitive, primitive equal (have identical values)
! primitive, primitive not equal (have different
values)
== reference, reference equal (refer to the same
object)
1= reference, reference not equal (refer to different
objects)
7 L & integer, integer bitwise AND
& boolean, boolean boolean AND
6 L ~ integer, integer bitwise XOR
n boolean, boolean boolean XOR
5 L | integer, integer bitwise OR
| boolean, boolean boolean OR
4 L && boolean, boolean conditional AND
3 L |1 boolean, boolean conditional OR
2 R 7?: boolean, any, any conditional (ternary) operator
1 R = variable, any assignment
*=, /=, %= variable, any assignment with operation
+= , —=
<<=, >>=,
>>>=
&=, "=, I
Precedence | Associativity | Operator | Operand Types Operation Performed
. object, member object member access
[array, int array element access
15 left-to-right (args) | method, arglist method invocation
++ variable post-increment
-- variable post-decrement
14 right-to-left ++ variable pre-increment

Beginning Programming (Java)

Lecture 10

CMSC 1513 Precedence and Associativity
-- variable pre-decrement
+ number unary plus
- number unary minus
! Boolean Boolean NOT
. new class, arglist object creation
13 right-to-left & J .
(type) type, any cast (type conversion)
real | integer, e
* | In"eg multiplication
real | integer
12 left-to-right real | integer, L
& / | INtes division
real | integer
% integer, integer remainder
real | integer, ,
+ | . 8 addition
real | integer
11 left-to-right real | integer, .
& - | . & subtraction
real | integer
+ string, any string concatentation

