
Beginning Programming (Java) 4.3 Character Data Type and Operations
CMSC 1513 Lecture 49

1

Key point: A character data type represents a single character.

4.3.1 Unicode and ASCII code

• A 16-bit Unicode takes two bytes, preceded by \u, expressed in four hexadecimal digits
that run from \u0000 to \uFFFF.

• Most computers use ASCII (American Standard Code for Information Interchange), an 8-
bit encoding scheme, for representing all uppercase and lowercase letters, digits,
punctuationmarks, and control characters. Unicode includes ASCII code with \u0000 to
\u007F corresponding to the 128 ASCII characters.

Table 4.4 ASCII Code for Commonly Used Characters
Characters Code Value in Decimal Unicode Value
‘0’ to ‘9’ 48 to 57 \u0030 to \u0039
‘A’ to ‘Z’ 65 to 90 \u0041 to \u005A
‘a’ to ‘z’ 97 to 122 \u0061 to \u007A

Examples:

char letter = ‘A’; //Equivalent to ‘\u0041’
char letter = ‘\u0041’; //Equivalent to ‘A’

4.3.2 Escape Sequences for Special Characters

System.out.println(“He said “Java is fun””); //Compilation error
System.out.println(“He said \”Java is fun\””); //Correction with escape sequences

Table 4.5 Escape Sequences

Escape Sequence Name Unicode Code Decimal Value
\b Backspace \u0008 8
\t Tab \u0009 9
\n Linefeed \u000A 10
\f Formfeed \u000C 12
\r Carriage Return \u000D 13
\\ Backslash \u005C 92
\” Double Quote \u0022 34

System.out.println(“\\t is a tab character”); //Displays \t is a tab character

4.3.3 Casting between char an Numeric Types

// Note a hex integer is written using prefix 0X
char ch = (char)0XAB0041; //The lower 16 bits hex code 0041 is
 //assigned to ch
System.out.println(ch); //ch is character A

Beginning Programming (Java) 4.3 Character Data Type and Operations
CMSC 1513 Lecture 49

2

When a floating-point value is cast into a char, the floating-point value is first cast into an int,
which is then cast into a char.

char ch = (char)65.25; //Decimal 65 is assigned to ch
System.out.println(ch); //ch is character A

When a char is cast into a numeric type, the character’s Unicode is cast into the specified numeric
type.

int i = (int)’A’; //The Unicode of character A is assigned to variable i
System.out.println(i); //i is character 65

Implicit casting can be used if the result of a casting fits into the target variable. Otherwise, explicit
casting must be used. For example, since the Unicode of ‘a’ is 97, which is within the range of a
byte, these implicit casting are fine:

byte b = ‘a’;
int i = ‘a’;

But the following statement is incorrect, because the Unicode \uFFF4 cannot fit into a byte:

byte b = (byte)’\uFFF4’;

Any positive integer between 0 and FFFF in hexadecimal can be cast into a character implicitly.
Any number not in this range must be cast into char explicitly.

All numeric operators can be applied to char operands. A char operand is automatically cast into
a number if the other operand is a number or a character. If the other operand is a string, the
character is concatenated with string. For example, the following statements

int i = ‘2’ + ‘3’; //(int)’2’ is 50 and (int)’3’ is 51
System.out.println(“i is “ + i); // i is 101

int j = 2 + ‘a’; //(int)’a’ is 97
System.out.println(“j is “ + j); // j is 99
//99 is the Unicode for character c
System.out.println(j + “ is the Unicode for character “ + (char)j);
System.out.println(“Chapter “ + ‘2’);

display

i is 101
j is 99
99 is the Unicode for character c
Chapter 2

Beginning Programming (Java) 4.3 Character Data Type and Operations
CMSC 1513 Lecture 49

3

4.3.4 Comparing and Testing Characters

Two characters can be compared using the relational operators just like comparing two numbers.
This is done by comparing the Unicodes of the two characters.

‘a’ < ‘b’ is true because the Unicode for ‘a’ (97) is less than the Unicode for ‘b’ (98).
‘a’ > ‘A’ is true because the Unicode for ‘a’ (97) is greater than the Unicode for ‘A’ (65).
‘1’ < ‘8’ is true because the Unicode for ‘1’ (49) is greater than the Unicode for ‘8’ (56).

Often in a program, you need to test whether a character is a number, a letter, an uppercase
letter, or a lowercase letter.

if (ch >= ‘A’ && ch <= ‘Z’)
System.out.println(ch + “ is an uppercase letter”);

else if (ch >= ‘a’ && ch <= ‘z’)
System.out.println(ch + “ is a lowercase letter”);

else if (ch >= ‘0’ && ch <= ‘9’)
System.out.println(ch + “ is a numeric character”);

Table 4.6 Methods in the Character Class

Method Description
isDigit(ch) Returns true if the specified character is a digit.
isLetter(ch) Returns true if the specified character is a letter.
isLetterOrDigit(ch) Returns true if the specified character is a letter or a digit.
isLowerCase(ch) Returns true if the specified character is a lowercase letter.
isUpperCase(ch) Returns true if the specified character is an uppercase letter.
toLowerCase(ch) Returns the lowercase of the specified character.
toUpperCase(ch) Returns the uppercase of the specified character.

Examples:

System.out.println(“isDigit(‘a’) is “ + Character.isDigit(‘a’));
System.out.println(“isDigit(‘a’) is “ + Character.isLetter(‘a’));
System.out.println(“isLowerCase(‘a’) is “ + Character.isLowerCase(‘a’));
System.out.println(“isUpperCase(‘a’) is “ + Character.isUpperCase(‘a’));
System.out.println(“toLowerCase(‘T’) is “ + Character.toLowerCase(‘T’));
System.out.println(“toUpperCase(‘q’) is “ + Character.toUpperCase(‘q’));

Displays
isDigit(‘a’) is false
isLetter(‘a’) is true
isLowerCase(‘a’) is true
isUpperCase(‘a’) is false
toLowerCase(‘T’) is t
toUpperCase(‘q’) is Q

