
Beginning Programming (Java) 2.9 Numeric Data Types and Operations
CMSC 1513 Lecture 21

 1

Key point: Java has six numeric types for integers and floating-point numbers with operators +, -,
*, /, and %.

2.9 Numeric Data Types and Operations

2.9.1 Numeric Types

Table 2.1 Numeric Data Types

Name Range Storage Size
byte −2^7to 2^7 − 1(−128 to 127) 8-bit signed byte type
short −2^15to 2^15− 1(−32768 to 32767) 16-bit signed short type
int −2^31to 2^31−

1(−2147483648 to 2147483647)
32-bit signed int type

long −2^63to 2^63− 1 64-bit signed long type
 (-9223372036854775808 to 9223372036854775807)
float Negative range: −〖3.4028235〗^38 to 〖 −

1.4〗^(−45)
32-bit IEEE
754

float type

 Positive range: 〖1.4〗^(−45) to 〖3.4028235〗^38
double Negative range:

 −〖1.7976931348623157〗^308 to 〖 −
4.9〗^(−324)

64-bit IEEE
754

double type

 Positive range:
 〖4.9〗^(−324) to 〖1.7976931348623157〗^308

2.9.2 Reading Numbers from the Keyboard

Table 2.2 Methods for Scanner Objects

Method Description
nextByte() reads and integer of the byte type
nextShort() reads and integer of the short type
nextInt() reads and integer of the int type
nextLong() reads and integer of the long type
nextFloat() reads and integer of the float type
nextDouble() reads and integer of the double type

1 Scanner input = new Scanner(System.in);
2 System.out.print(“Enter a byte value: “);
3 byte byteValue = input.nextByte();
4
5 System.out.print(“Enter a short value: “);
6 short shortValue = input.nextShort();
7
8 System.out.print(“Enter a int value: “);
9 int intValue = input.nextInt();

10
11 System.out.print(“Enter a long value: “);
12 long longValue = input.nextLong();

Beginning Programming (Java) 2.9 Numeric Data Types and Operations
CMSC 1513 Lecture 21

 2

13
14 System.out.print(“Enter a float value: “);
15 float floatValue = input.nextFloat();

2.9.3 Numeric Operators

Table 2.3 Numeric Operators

Name Meaning Example Result
+ Addition 34 + 1 35
- Subtraction 34.0 – 0.1 33.9
* Multiplication 300 * 30 9000
/ Division 1.0 / 2.0 0.5
% Remainder 20 % 3 2

• Integer division. The fractional portion of the quotient is truncated when integer division

is employed.
• Example 1: Both the 1 and the 3 are integer constants forcing the /-operator to be

integer division
1 / 3 = 0.3333 = 0

• Example 2: The numerator 1.0 is a floating-point value forcing the /-operator to
perform real division
1.0 / 3 = 0.3333

• Modulo arithmetic. The %-operator finds the remainder. Both operands must be
integers. The operand on the left is the numerator (dividend) and the operand on the
right is the denominator (divisor).
• Positive examples:

o 7 % 3 = 1 // 7 ÷ 3 = 2 r 1
o 3 % 7 = 3 //3 ÷ 7 = 0 r 3
o 22 % 7 = 1 //22 ÷ 7 = 3 r 1

• Negative examples:
o 7 % 3 = 1 // 7 ÷ 3 = 2 r 1
o 3 % 7 = 3 //3 ÷ 7 = 0 r 3
o 22 % 7 = 1 //22 ÷ 7 = 3 r 1

Beginning Programming (Java) 2.9 Numeric Data Types and Operations
CMSC 1513 Lecture 21

 3

Listing 2.5 DisplayTime.java
1 import java.util.Scanner;
2
3 public class DisplayTime {
4 public static void main(String[] args) {
5 Scanner input = new Scanner(System.in);
6 //Prompt the user for input
7 System.out.print(“Enter an integer for seconds: “);
8 int seconds = input.nextInt();
9

10 int minutes = seconds / 60; //Find minutes in seconds
11 int remainingSeconds = seconds % 60; //Seconds remaining
12 System.out.println(seconds + “ seconds is “ + minutes +
13 “ minutes and “ + remainingSeconds + “ seconds”);
14 }
15 }

run:
Enter an integer for seconds: 500
500 seconds is 8 minutes and 20 seconds
BUILD SUCCESSFUL (total time: 8 seconds)

2.9.4 Exponent Operations

• The Math.pow(a,b) method can be used to compute 𝑎𝑎𝑏𝑏.
• Example: compute 43;

Math.pow(4,3)
• Examples

System.out.println(Math.pow(2,3)); //Displays 8.0
System.out.println(Math.pow(4,0.5)); //Displays 2.0
System.out.println(Math.pow(2.5,2)); //Displays 6.25
System.out.println(Math.pow(2.5,-2)); //Displays 0.16

