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Abstract—Model-driven development (MDD) drastically changes 
the traditional view of software modeling, which no longer serves 
merely as documentation that will be put aside at a certain point 
during the development. Instead, MDD has made models an 
integral part of the development process. As a result, software 
designers and developers can focus on high-level problem solving 
instead of low-level implementation details. However, the current 
research focus is on model transformations and overlooks the 
importance of code generation, which includes the generation of 
infrastructural code (the static aspects of the system) and 
business code (the behavioral aspects of the system). In this 
paper, we first analyze the root cause about why existing MDD 
approaches are only good at generating the infrastructural code. 
Then, we propose a comprehensive approach that considers 
functional, dynamic, and object modeling. This approach is able 
to generate both infrastructural and business code. Finally, we 
present a case study to evaluate the proposed approach. Through 
this case study, we identify some insights on automated code 
generation in MDD. Our results demonstrate that it is not only 
likely, but also possible to fully automate the code generation 
process in MDD.    

Keywords: Model-Driven Development (MDD), Model-Driven 
Architecture (MDA), AI Planning, Component-Based Software 
Development (CBSD), Code Pattern 

I.  INTRODUCTION 
Model-driven development (MDD) is an emerging software 

development approach that aims to bridge the semantic gap 
between the problem domain and solution domain. 
Specifically, models are not only used to construct high-level 
specifications, but are also essential artifacts of the 
development process. This is a big improvement over the 
traditional software development processes, in which the 
software design and development are disconnected. For 
example, during the software analysis and design phase, use 
cases, interaction diagrams, class diagrams, and other UML 
diagrams are constantly used to model the problems to be 
solved. However, these artifacts are only understandable by 
people, not by computers. When the coding phase starts, these 
diagrams are quickly put aside because very few people want 
to go back and change the design documents to make them 

consistent with the software development. The design 
documents gradually lose their values as the development 
proceeds. This tendency also highlights other serious problems, 
namely, maintenance and documentation problems. As the 
design documents are always out of date, developers who did 
not participate in the initial development have a hard time to 
understand the system through the available documents. 
Therefore, it is also difficult for them to maintain the system 
well. 

MDD overcomes the aforementioned problem through two 
key themes, namely, raising the level of abstraction of 
specifications and raising the level of automation [14]. For 
example, model-driven architecture (MDA) [17], the industry 
standard for MDD defined by OMG, classifies models as 
platform independent models (PIM), platform specific models 
(PSM), and code. PIMs are used to construct high-level 
specifications that are closer to the problem domains, but are 
independent of any implementation platforms. Then, automatic 
transformations are performed to transform PIMs into PSMs, 
which are in turn transformed into the code. MDA enables 
designers and developers to keep their focus on the high-level 
PIMs, i.e., the problem solving itself. The technical details will 
be handled through model transformation from PIMs to PSMs, 
and then to code. 

The current research focus is on model transformations 
[5][15]. When it comes to code, most of the works would state 
using code generation tools to generate the code [5][15]. It 
seems that code generation has been mature enough in MDD. 
However, the majority of existing works are only good at 
generating the infrastructural code (i.e., the stub/skeleton of the 
code), not the business code (i.e., the implementation of the 
business logics) [16]. Theoretically, this limitation is not 
surprising because of the following two reasons. (1) Due to 
raising the level of abstraction of specification, the low-level 
implementation details are left out from the modeling 
languages [14]. (2) UML 2.0 is the de facto standard for MDD. 
Classes, objects, and/or components are the major artifacts for 
high-level modeling. These artifacts belong to object modeling, 
which only reflects the static aspect of the system [1]. 
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To bridge the semantic gap between the high-level models 
and low-level business logic details, Selic [14] suggested 
“heterogeneous models”, in which “fragments in detail-level 
languages are directly embedded in the appropriate parts of the 
model”. Although this approach seems practical, it remains 
unclear where the fragments are embedded, i.e., in PIM or 
PSM. It is also unclear whether it is possible to automate this 
process. Sharing similar ideas, Frame Oriented Programming 
(FOP) [13], a template-based approach, is used to generate both 
infrastructural and business code automatically. The code 
generation is done through reusing existing frames, which are 
fragments written in detail-level languages. However, the reuse 
is achieved through name matching, i.e., the names in the 
specification are used to match the names of frames. Such 
matching strategy is fragile, i.e., it may miss the semantic 
meaning. It is possible that the matching will fail to find the 
frame that has the correct semantic content, but with a different 
name. It is also possible that it may match a frame with the 
same name, but has a different semantic meaning. 

Obviously, the link between the high-level models and the 
low-level business code is missing. We believe that artificial 
intelligence techniques are mandatory for intelligently locating 
the missing details and assembling these details into the 
appropriate places. In this paper, we present a comprehensive 
approach for system modeling including functional, dynamic, 
and object modeling to establish the missing link. AI planning 
is used to connect the different aspects of modeling so that the 
level of automation is raised and both infrastructural and 
business code can be automatically generated. Furthermore, we 
use a case study system to examine the proposed approach and 
summarize the insights learned from the case study. 

The rest of the paper is organized as follows. Section II 
proposes a comprehensive MDD-based software development 
approach. Section III evaluates the proposed approach through 
a case study. In Section IV, we present the insights learned 
from the case study. Finally, we discuss the related works in 
Section V and conclude the paper in Section VI. 

II. A COMPREHENSIVE SOFTWARE DEVELOPMENT 
APPROACH 

In this section, we propose a comprehensive approach that 
considers different aspects of system modeling, namely, 
functional models, object models, and dynamic models. Above 
all, we show how to use AI planning to connect different 
models together so that design and development can be 
automated. 

A. AI Planning 
We introduce the definitions and notations in AI planning 

that will be used in the rest of this paper. 

Definition 1. An AI planning domain is a 4-tuple � = (P, S, A, 
�), where P is a finite set of propositions; S � 2P is a finite set 
of states; A is a finite set of actions; and � : S � A � 2S is the 
state-transition function. 

Definition 2. An action in AI planning is a pair �pre, eff� 
consisting of precondition and effect. 

Definition 3. A planning problem is a triple �s0, g, ��, where s0 
is the initial state, g is the goal state, and � is the planning 
domain. 

From Definition 3, we can see that the specification of a 
planning problem is declarative, i.e., focusing on what to do, 
instead of how to do it. Given a planning problem �s0, g, ��, the 
AI planner is responsible for finding a plan of actions that lead 
the system from the initial state s0 to the goal state g. 

Due to the declarative nature, the use of AI planning to 
support MDD is not intrusive and, therefore, can be loosely 
coupled with MDD. 

B. Functional Modeling 
Functional models are used to depict the functionality of the 

system from the user’s point of view [1]. Such models are 
directly built upon the problem domains and, hence, are 
understandable by users. UML use case diagrams are 
commonly used for functional modeling. Use cases are 
independent of any implementation details and, thus, can be 
treated as platform independent models (PIMs).  

However, use cases by themselves may be interpreted in 
many different ways. To avoid ambiguity, the semantic 
meaning should be formally specified. The popular way to 
specify semantics is to use pre-condition and effect �R, E�, 
which is declarative and naturally fits in high-level modeling. 

C. Connecting Functional and Dynamic Modeling 
Since use cases only present the outside view of the system, 

the internal behaviors of the system should be captured by 
using dynamic modeling. For a particular use case, a sequence 
diagram and/or an activity diagram is usually constructed to 
illustrate the internal behaviors. The current practice typically 
builds dynamic models manually by designers. In this paper, 
we propose using AI planning to facilitate the construction of 
activity and sequence diagrams based on the semantics of use 
cases. 

If we look at the way of formally specifying the semantics 
of a use case (i.e., �R, E�) and the definition of a planning 
problem (i.e., �s0, g, �� in Definition 3), we can see that it is 
possible to transform the semantics of a use case into an AI 
planning problem. Specifically, we can transform the 
precondition R into the initial state s0 and transform the effect E 
into the goal g. Then, what is left is to define the planning 
domain �. 

To locate the planning domain �, the focus should be put on 
the platform specific models (PSM). From Section I, we can 
see that no matter whether it uses heterogeneous models [14] or 
code templates [13], the assumption is that we can find 
platform specific models to reuse. In fact, such kind of reuse is 
possible. For example, component-based software development 
(CBSD) techniques [18] are concerned with reusing existing 
software components to build larger applications at a lower 
cost and risk and in less time. Previously verified or tested 
components serve as building blocks to construct reliable and 
dependable application systems. As another example, semantic 
Web services [10] are loosely coupled with each other and can 
be easily reused. 
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Figure 1 shows how AI planning can be used to connect 
functional and dynamic modeling. In the first step, the 
specifications of use cases are transformed into planning 
problems. In the second step, AI planner works on the planning 
domain, which is an abstraction of PSMs, to find a plan. 
Finally, the generated plan is represented as a UML sequence 
diagram or activity diagram. It needs to be emphasized that the 
generated plan is based on PSMs and the designers may need to 
perform some abstractions so that the dynamic models will 
represent PIMs. In other words, the last step may require 
human’s involvement. 
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Figure 1. Using AI Planning to Connect Functional and Dynamic Modeling 

D. An Advanced Program Generation Framework 
Based on the functional and dynamic models, we can start 

to build the object models. UML class diagrams are commonly 
used for object modeling. As discussed in Section I, object 
models only represent the static aspects of the system. This is 
the reason why existing MDD approaches are only good at 
generating the infrastructural code (i.e., only include the 
definitions of classes and declarations of operations without 
implementations of the operations). 
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Figure 2. A Generic Program Generation Framework 

In [3], we proposed a conceptual framework for automated 
code generation including AI planning, MDA, and Component-
based software development (CBSD). Here, we generalize the 
framework, which is shown in Figure 2. MDA and AI planning 
are loosely coupled through specification transformations. The 

principle of such coupling comes from the fact that we can 
perform functional decomposition so that the high-level use 
cases can be decomposed into lower level use cases. Such 
functional decomposition stops when the use cases represent 
the operations defined in classes. Therefore, the semantics of 
the operations are also formalized as �R, E�, i.e., the 
precondition and effect. 

The planning domain is abstracted over the component 
repository. The implication is that existing components need 
some kind of formal specification. For example, the ontology 
language OWL-S [8] models a Web service as a 4-tuple, 
namely, inputs, outputs, precondition, and effects. Similarly, 
we proposed the concept of code patterns [2][7], which 
captures the typical usages of components and defines their 
possible calling sequences. The semantics of a code pattern is 
also specified with preconditions and effects. 

From Figure 2, we can see that code is classified into two 
categories, namely, infrastructural code and business code. 
MDA is responsible for generating the infrastructural code 
through model transformation, i.e., from PIM to PSM and, 
then, from PSM to code. On the other hand, the AI planning 
based subsystem is responsible for generating the business 
code. Specifically, this is achieved through automatically 
generating the glue code needed to meet a given specification 
by assembling the system from existing components.  

E. An Implementation of the Framework 
We implemented the generic program generation 

framework with some specialized techniques. Specifically, we 
use IBM Rational Rose [12] for the MDA platform. Strictly 
speaking, Rational Rose is not designed for MDA. However, 
with its excellent modeling and code generation capability, it at 
least possesses the basic features of MDA. 

For the reuse of existing components, we use code patterns 
[2][7], a component-based software development (CBSD) 
technique. The definition of code pattern is as follows. 

Definition 4 (Code Pattern). A code pattern cp is a named 
functional unit that captures the typical structure and 
composition of a set of components. cp is represented by a 
triple cp = (i, b, c), where cp is the pattern name, i is the 
interface, b is the body, and c is a pair of precondition and 
effect {R, E}. The functionality of a pattern cp can be 
represented as {R}cp{E}. 

The pattern body b is a code template that captures the 
typical way of using components. For example, we need two 
lines of code in Java to locate a Web service with the service 
stub, which is shown as follows. 

?Service    locator = new   ?ServiceLocator(); 
?    locservice = locator.get?();  

Here, “?” represents the service name. In the first step, the 
service locator is created and in the second step, an instance of 
the service is obtained. The use of code patterns can 
significantly reduce the chance of repeatedly writing similar 
code segments. 

The pattern interface i defines all the parameters including 
the input parameters Pin that are used to instantiate the pattern 
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body b and the output parameters Pout that are used to return the 
computation results. 

Besides the formal semantic specification, code patterns 
have another major difference from a code template, which is 
the use of pattern operators. There are three pattern operators, 
namely, concatenate, splice, and reverse, defined over code 
patterns to facilitate glue code generation [2]. 

For AI planning, we use our own AI planner, FIP [4]. FIP is 
three orders of magnitude faster than other state-of-the-art AI 
planners and, hence, is well suited for automated code 
generation. 

III. CASE STUDY 
In this section, we assess the proposed comprehensive 

MDD approach through a Web-based E-Government 
inspection system. Assume that a city government has already 
developed a backend application system. The central business 
of the application system is related to inspections of housing 
foundations, fire alarms, and so on. Inspectors can create, 
reschedule, and cancel inspections. They can also make 
itineraries on a specific day to conduct inspections that are 
scheduled on that day. All these functionalities are supported 
by different Web services in the application system. Now, the 
city government wants to develop a Web-based system to 
provide a bridge between the inspectors and the backend 
application system. Figure 3 shows the overall picture of the 
whole system. 
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Figure 3. Overall System Structure 

The major Web services involved in the system are listed in 
Table I. 

TABLE I. MAJOR WEB SERVICES INVOLVED IN THE SYSTEM 

Service Comment 

Authenticate Require users to provide user names 
and passwords and check their validity 

Create Inspection Create a new inspection 
Reschedule 
Inspection Change the inspection date/time. 

Cancel Inspection Remove an inspection from the system 
Locate Inspection Find a particular inspection 

Search Inspections 
List a set of inspections according to 
some search criteria, e.g., date, 
location, etc. 

GIS Given a set of locations, return an 
itinerary that is time and fuel efficient 

Fax Fax itinerary or inspections to users 
Email Email itinerary or inspections to users 

Callback Call users to notify them about the 
itinerary or inspections 

Reserve a car The government provides a car for 
inspectors to carry out the inspections. 

Car rental 
If the internal cars are all scheduled on 
a specific day, the inspector can rent a 
car instead. 

Reserve Taxi The inspector can also reserve a taxi 
for transportation. 

Credit card payment Related to car rental or taxi reservation 

A. Web-based E-Government Inspection System 
The goal of this case study is to develop a Web-based 

inspection system. Here, the backend application system 
(consisting of all the Web services) is outside of the Web-based 
inspection system. The inspection system consists of four 
subsystems, namely, inspection management, itinerary, 
notification, and transportation. Figure 4 illustrates the top-
level system structure. 

 
E-Government 

Inspection System 

Inspection Itinerary Notification Transportation 

Figure 4. Top Level System Structure 

The inspection management subsystem enables the 
inspectors to create, reschedule, cancel, and query inspections. 
This subsystem provides the main business functionalities and 
interacts with other subsystems to provide convenient services 
to inspectors. The itinerary subsystem provides the GIS 
(Geographic Information System) service. An inspector usually 
has to inspect several locations in one day. The inspector inputs 
the specific date for inspections and uses the search inspections 
service to locate the set of inspections scheduled on that day. 
Then, the GIS service provides an itinerary that should be 
efficient in terms of both the time and the distance traveled. 

The notification subsystem enables inspectors to fax, email, 
or callback their inspection query results or itinerary details to 
themselves for their own record. After the inspection itinerary 
is prepared, the inspector needs to reserve a car. Normally, the 
government provides the cars to inspectors. In case all the cars 
are currently being used, the inspector can choose to rent a car 
or reserve a taxi to carry out the inspections. Inspectors can pay 
the related fees with the credit card payment service. 

In addition, the user authentication is mandatory, i.e., a user 
is required to provide his/her user name and password to 
continue to operate the system.  

B. Component Repository. 
 In this case study, we map Web services into code patterns. 

In industry, the typical way of invoking Web services is shown 
in Figure 5. The clients use client stubs to invoke Web services. 
The functionality of each Web service is delegated to the client 
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stub, which is stored locally with the client programs. To users, 
it seems that the Web service itself is stored locally and the 
invocation of the Web service is just like a regular function 
call. Then, the client stub wraps up the request as a SOAP 
message and sends it to the server stub. 

Therefore, the typical ways of invoking a Web service 
through client stubs can be modeled as code patterns. 
Typically, the capability of a Web service is modeled with a 4-
tuple, namely, �inputs, outputs, preconditions, effects�, i.e., �I, 
O, P, E� [8]. We have formulated a direct mapping from a Web 
service to a code pattern. Specifically, I is mapped to the input 
parameters Pin defined in the code pattern interface i; O is 
mapped to the output parameters Pout; P is mapped to the 
precondition R; and E is mapped to the effect E. For code 
patterns, there is an extra field, which is the pattern body b. The 
typical ways of using the client stub can be put into the pattern 
template to facilitate code generation. Therefore, a Web service 
is mapped perfectly into a code pattern. 

Server

Web Service Server 
Stub

Client

Client 
Stub

Client 
Application

  
Figure 5. Invocation of Web Service 

C. High-Level System Design 

 
Figure 6. The Use Cases for the Inspection Management Subsystem 

Use cases are the first tangible things that stakeholders 
interact with. Due to space limitation, we only show the use 
case diagram for the inspection management subsystem (in 

Figure 6). The use case diagram includes five use cases, 
namely, create an inspection, reschedule an inspection, delete 
an inspection, locate an inspection, and search a set of 
inspections according to a certain criteria. 

1) Specifying semantics of use cases. As discussed in 
Section II.B, preconditions and effects are imposed on a use 
case to specify the conditions under which the use case can be 
applied and what effects the use case is expected to generate. 
For example, the precondition for the use cases of “Locate an 
inspection” is the availability of the user name, password, and 
the confirmation number of the inspection. The effect is that 
the inspection is located or does not exist. 

2) Deriving dynamic models. As illustrated in Figure 1, the 
specifications of use cases are transformed into AI planning 
problems. Then, the AI planner works on the planing domain 
(which is derived from the component repository) to look for 
plans for these planning problems. The plans can be 
interpreted in many different ways, such as UML activity 
diagrams or UML sequence diagrams. For example, Figure 7 
shows the activity diagrams for use cases of “Locate an 
inspection” and “Delete an inspection”. Figure 8 shows the 
sequence diagram for the use case of “Delete an inspection”. 

The translation of the generated plans into the 
corresponding dynamic models (e.g., activity diagrams and 
sequence diagrams) was manually done in this case study. 
However, it is possible to automate this process in the future 
study. 

 
Figure 7. Activity Diagrams for Use Cases of “Locate an inspection” and 

“Delete an inspection”. 

 
Figure 8. Sequence Diagram for “Delete an inspection” 

Locate an inspection

Create an inspection

Delete an inspection

Reschedule an inspection

Inspector

Search inspections
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3) Building the object models. Based on the functional and 
dynamic models, we built the object models. Especially, a 
sequence diagram depicts a flow of events consisting of 
objects participating in a use case. The flow gives us a clear 
picture about the business logics of the Web-based inspection 
system. They enable us to deepen the understanding of the 
system and provide insights to design the correct PIM. In 
addition, the dynamic models help us identify objects that will 
be used in the object modeling. For example, the flow of 
events in Figure 8 leads to the following PIM design shown in 
Figure 9. The model depicted as the square shape in Figure 9 
represents the client side Web page and the models depicted as 
the gear shape represent server side or dynamic Web pages. It 
should be noted that these models for Web pages are 
independent of any implementations. For example, the server 
pages (i.e., depicted as the shape of gear) can be implemented 
with JSP (Java Server Page), ASP (Active Server Page), or 
PHP. 

 

 
Figure 9. PIM for “Locate an inspection” and “Delete an inspection” 

Combining all such pieces together, we are able to 
generalize the design of PIMs and their relationship. Figure 10 
shows the major part of the PIMs that is designed for the E-
Government system. The relationships among different PIMs 
are also defined.  

 

Figure 10. Major Parts of PIMs 

D. Code Generation 
As discussed in Section I, we classify code as 

infrastructural code and business code. To generate the 
infrastructural code, we rely on Rational Rose’s code 
generation capability. Both client-side static HTML Web pages 
and the skeletons of server-side dynamic server pages are 
automatically generated. This is the static aspects of the E-
Government inspection system because Rational Rose cannot 
generate business code for the server pages.  

To generate business code, we need to specify the 
semantics of PIMs so that the specifications can be transformed 
into AI planning problems. As discussed in Section II.D, 
preconditions and effects are used to specify the semantics of 
the PIMs. Since the models are mostly obtained from the plans 
returned by the AI planner, their semantics can be found from 
the corresponding actions in the plans, i.e., use the 
preconditions and effects of these actions in the corresponding 
models. 

After the semantics of PIMs are formally specified, we 
transform the specifications into AI planning problems. Then, 
we run the AI planners to generate plans, based on which the 
business code is synthesized over the component repository 
(see Section III.B). 

In summary, AI planning plays two critical roles in the 
proposed MDD-based approach. First, AI planning connects 
the functional modeling with dynamic modeling in the high-
level design. Second, AI planning-based synthesis can generate 
business code based on the semantics of object models. 

IV. DISCUSSION 
In this section, we first discuss the insights learned from the 

case study. Then, we identify a few limitations of the study. 

A. Insights 
Through the case study, we can see that it is possible to 

automatically generate the complete system. To ensure this, the 
following requirements must be satisfied. 

1) Functional and dynamic modeling must be integrated 
into object modeling. Object modeling alone is insufficient. 
This is the major reason why existing MDD approaches are 
not good at generating business code. Object modeling only 
represents the static aspects of the system. We must integrate 
functional and dynamic modeling into object modeling so that 
both business code and infrastructural code can be 
automatically generated. 

2) The techniques imposed upon MDD should be 
unintrusive . In other words, any techniques imposed on MDD 
should be loosely coupled with MDD. This requirement 
ensures that the benefits of MDD will not be compromised. 
For example, our proposed approach uses AI planning, which 
interacts with MDD indrectly through specification 
transformations. 

3) Artificial intelligence techniques are mandatory. It is a 
violation of the MDD principles if we manually put the detail-
level templates to the “appropriate” places because otherwise 
designers and developers cannot simply focus on the high-
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level problem solving, but will have to worry about the low-
level technical details as well. Therefore, artificial intelligence 
techniques will be helpful in “intelligently” locating the low-
level details and assembling these details into the appropriate 
places. In our case, we use AI planning to select and organize 
existing components to achieve this goal. 

4) Code reuse. Irrespective of whether we use 
heterogeneous models, FOP, or the approach proposed in this 
paper, code reuse is critical in code generation.  

B. Limitations of the Case Study 
When specifying the semantics, we used the combination of 

XML and PDDL [9], an AI planning specification language. 
Figure 11 shows how we specify the semantics of a model in 
Rational Rose. In fact, OWL-S [8] uses a similar approach by 
mixing XML and formal specification languages. However, 
such methods may impose extra burdens on designers and 
developers because they have to know PDDL as well as other 
high-level specification languages. In addition, such methods 
may increase the possibility of failing to find a solution simply 
because the way in which the specification is written may not 
match the specifications of components in the component 
repository. Therefore, it would be beneficial if the knowledge 
in the component repository is presented in a way that can be 
easily used during the specification. Ontology may help 
mitigate this problem. A standardized high-level specification 
language may help reduce the workload on software designers 
and developers. 

 
Figure 11. Example of Formal Specification in Rational Rose 

V. RELATED WORKS 
MDA (Model-Driven Architecture) [6][11] has attracted 

wide attention. The developers start from the design of high 
level PIMs (Platform Independent Models) and use 
transformations to map models to a lower level. Hence, 
developers can concentrate on the development of PIMs, which 
are a higher level of abstraction than the actual code. PSMs are 
generated from PIMs through transformation. Also, the codes 
are in turn generated from PSMs. These processes can be 
automated to increase productivity. In addition, by focusing on 
PIMs, developers can put more efforts on dealing with business 
issues, which is another favorable factor for speeding up the 
development process. However, transformations are good at 

generating the static infrastructural code instead of the 
behavioral business code. 

To overcome the limitation of the transformation method, 
the concept of “heterogeneous models” [14] is introduced to 
empower MDA to generate business code. In this type of 
model, PIM and PSM are still specified with the original 
modeling language. Segments written in low-level languages 
are embedded in the appropriate parts of the high-level 
components. The major advantage of this approach is that 
existing code can be reused and business code can be 
generated. However, the mix of high-level models and low-
level segments may make the design difficult to understand and 
may neutralize MDA’s benefits of portability and 
documentation. 

Frame oriented programming (FOP) [13] was proposed to 
generate both infrastructural and business code. This approach 
is used in industry and is an effective form of template driven 
code generation. The business code generation is based on the 
reuse of existing templates through name matching, i.e., the 
names of the operations in the specification should match the 
names of existing templates. Name matching may lose the 
semantic meaning and, therefore, lead to errors.  

VI. CONCLUSIONS AND FUTURE WORK 
In this paper, we point out a missing link between the high-

level models and the business code in MDD. We analyze the 
root cause of the missing link: Object modeling alone is 
insufficient in generating a complete system. To establish the 
link, we present a comprehensive software development 
approach based on MDD that is able to generate both 
infrastructural code and business code automatically. 
Specifically, we use AI planning to connect functional, 
dynamic, and object modeling together in MDD. AI planning is 
loosely coupled with MDD and, therefore, does not hurt the 
MDD’s advantages of portability and documentation.  

 

Infrastructure 
Code  

 Business  
Code 

Manually 
Composed Code  

MDA 

AI planning and 
Component-

based generation 

Developers 

Final Code 
 

Figure 12. Sources to Obtain the Final Code [3] 

To evaluate the proposed approach, we conducted a case 
study to automatically generate a Web-based E-Government 
inspection management system. We showed how to use AI 
planning to facilitate the construction of dynamic models (e.g., 
activity diagrams and sequence diagrams) from the functional 
models (e.g., use cases). Based on the functional models and 
dynamic models, we constructed the object models. The 
semantics of the object models were formally specified and 
subsequently transformed into AI planning problems. 
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Eventually, as shown in Figure 12, the infrastructural code was 
generated by MDA and the business code was generated by AI 
planning and component-based program generation approach. 
Although the code was completely generated in this case study, 
in practice it is possible that some parts of the system may not 
be automatically generated. In such cases, software developers 
will have to manually develop the code to fill in the blank. 

In the next step, we will enhance the proposed approach to 
overcome the limitations discussed in Section IV.B, i.e., to 
make the knowledge of the underlying component repository 
readily and easily available in the high-level design. 
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