
Model-Driven Development: Where Does the Code
Come From?

Insights Learned From a Case Study

Jicheng Fu Wei Hao Farokh B. Bastani, and I-Ling Yen
Computer Science Department Computer Science Department Computer Science Department

University of Central Oklahoma Northern Kentucky University University of Texas at Dallas
Edmond, OK, USA Highland Heights, KY, USA Richardson, TX, USA

jfu@uco.edu haow1@nku.edu {bastani, ilyen}@utdallas.edu

Abstract—Model-driven development (MDD) drastically changes
the traditional view of software modeling, which no longer serves
merely as documentation that will be put aside at a certain point
during the development. Instead, MDD has made models an
integral part of the development process. As a result, software
designers and developers can focus on high-level problem solving
instead of low-level implementation details. However, the current
research focus is on model transformations and overlooks the
importance of code generation, which includes the generation of
infrastructural code (the static aspects of the system) and
business code (the behavioral aspects of the system). In this
paper, we first analyze the root cause about why existing MDD
approaches are only good at generating the infrastructural code.
Then, we propose a comprehensive approach that considers
functional, dynamic, and object modeling. This approach is able
to generate both infrastructural and business code. Finally, we
present a case study to evaluate the proposed approach. Through
this case study, we identify some insights on automated code
generation in MDD. Our results demonstrate that it is not only
likely, but also possible to fully automate the code generation
process in MDD.

Keywords: Model-Driven Development (MDD), Model-Driven
Architecture (MDA), AI Planning, Component-Based Software
Development (CBSD), Code Pattern

I. INTRODUCTION
Model-driven development (MDD) is an emerging software

development approach that aims to bridge the semantic gap
between the problem domain and solution domain.
Specifically, models are not only used to construct high-level
specifications, but are also essential artifacts of the
development process. This is a big improvement over the
traditional software development processes, in which the
software design and development are disconnected. For
example, during the software analysis and design phase, use
cases, interaction diagrams, class diagrams, and other UML
diagrams are constantly used to model the problems to be
solved. However, these artifacts are only understandable by
people, not by computers. When the coding phase starts, these
diagrams are quickly put aside because very few people want
to go back and change the design documents to make them

consistent with the software development. The design
documents gradually lose their values as the development
proceeds. This tendency also highlights other serious problems,
namely, maintenance and documentation problems. As the
design documents are always out of date, developers who did
not participate in the initial development have a hard time to
understand the system through the available documents.
Therefore, it is also difficult for them to maintain the system
well.

MDD overcomes the aforementioned problem through two
key themes, namely, raising the level of abstraction of
specifications and raising the level of automation [14]. For
example, model-driven architecture (MDA) [17], the industry
standard for MDD defined by OMG, classifies models as
platform independent models (PIM), platform specific models
(PSM), and code. PIMs are used to construct high-level
specifications that are closer to the problem domains, but are
independent of any implementation platforms. Then, automatic
transformations are performed to transform PIMs into PSMs,
which are in turn transformed into the code. MDA enables
designers and developers to keep their focus on the high-level
PIMs, i.e., the problem solving itself. The technical details will
be handled through model transformation from PIMs to PSMs,
and then to code.

The current research focus is on model transformations
[5][15]. When it comes to code, most of the works would state
using code generation tools to generate the code [5][15]. It
seems that code generation has been mature enough in MDD.
However, the majority of existing works are only good at
generating the infrastructural code (i.e., the stub/skeleton of the
code), not the business code (i.e., the implementation of the
business logics) [16]. Theoretically, this limitation is not
surprising because of the following two reasons. (1) Due to
raising the level of abstraction of specification, the low-level
implementation details are left out from the modeling
languages [14]. (2) UML 2.0 is the de facto standard for MDD.
Classes, objects, and/or components are the major artifacts for
high-level modeling. These artifacts belong to object modeling,
which only reflects the static aspect of the system [1].

2011 Fifth IEEE International Conference on Semantic Computing

978-0-7695-4492-2/11 $26.00 © 2011 IEEE

DOI 10.1109/ICSC.2011.76

255

To bridge the semantic gap between the high-level models
and low-level business logic details, Selic [14] suggested
“heterogeneous models”, in which “fragments in detail-level
languages are directly embedded in the appropriate parts of the
model”. Although this approach seems practical, it remains
unclear where the fragments are embedded, i.e., in PIM or
PSM. It is also unclear whether it is possible to automate this
process. Sharing similar ideas, Frame Oriented Programming
(FOP) [13], a template-based approach, is used to generate both
infrastructural and business code automatically. The code
generation is done through reusing existing frames, which are
fragments written in detail-level languages. However, the reuse
is achieved through name matching, i.e., the names in the
specification are used to match the names of frames. Such
matching strategy is fragile, i.e., it may miss the semantic
meaning. It is possible that the matching will fail to find the
frame that has the correct semantic content, but with a different
name. It is also possible that it may match a frame with the
same name, but has a different semantic meaning.

Obviously, the link between the high-level models and the
low-level business code is missing. We believe that artificial
intelligence techniques are mandatory for intelligently locating
the missing details and assembling these details into the
appropriate places. In this paper, we present a comprehensive
approach for system modeling including functional, dynamic,
and object modeling to establish the missing link. AI planning
is used to connect the different aspects of modeling so that the
level of automation is raised and both infrastructural and
business code can be automatically generated. Furthermore, we
use a case study system to examine the proposed approach and
summarize the insights learned from the case study.

The rest of the paper is organized as follows. Section II
proposes a comprehensive MDD-based software development
approach. Section III evaluates the proposed approach through
a case study. In Section IV, we present the insights learned
from the case study. Finally, we discuss the related works in
Section V and conclude the paper in Section VI.

II. A COMPREHENSIVE SOFTWARE DEVELOPMENT
APPROACH

In this section, we propose a comprehensive approach that
considers different aspects of system modeling, namely,
functional models, object models, and dynamic models. Above
all, we show how to use AI planning to connect different
models together so that design and development can be
automated.

A. AI Planning
We introduce the definitions and notations in AI planning

that will be used in the rest of this paper.

Definition 1. An AI planning domain is a 4-tuple � = (P, S, A,
�), where P is a finite set of propositions; S � 2P is a finite set
of states; A is a finite set of actions; and � : S � A � 2S is the
state-transition function.

Definition 2. An action in AI planning is a pair �pre, eff�
consisting of precondition and effect.

Definition 3. A planning problem is a triple �s0, g, ��, where s0
is the initial state, g is the goal state, and � is the planning
domain.

From Definition 3, we can see that the specification of a
planning problem is declarative, i.e., focusing on what to do,
instead of how to do it. Given a planning problem �s0, g, ��, the
AI planner is responsible for finding a plan of actions that lead
the system from the initial state s0 to the goal state g.

Due to the declarative nature, the use of AI planning to
support MDD is not intrusive and, therefore, can be loosely
coupled with MDD.

B. Functional Modeling
Functional models are used to depict the functionality of the

system from the user’s point of view [1]. Such models are
directly built upon the problem domains and, hence, are
understandable by users. UML use case diagrams are
commonly used for functional modeling. Use cases are
independent of any implementation details and, thus, can be
treated as platform independent models (PIMs).

However, use cases by themselves may be interpreted in
many different ways. To avoid ambiguity, the semantic
meaning should be formally specified. The popular way to
specify semantics is to use pre-condition and effect �R, E�,
which is declarative and naturally fits in high-level modeling.

C. Connecting Functional and Dynamic Modeling
Since use cases only present the outside view of the system,

the internal behaviors of the system should be captured by
using dynamic modeling. For a particular use case, a sequence
diagram and/or an activity diagram is usually constructed to
illustrate the internal behaviors. The current practice typically
builds dynamic models manually by designers. In this paper,
we propose using AI planning to facilitate the construction of
activity and sequence diagrams based on the semantics of use
cases.

If we look at the way of formally specifying the semantics
of a use case (i.e., �R, E�) and the definition of a planning
problem (i.e., �s0, g, �� in Definition 3), we can see that it is
possible to transform the semantics of a use case into an AI
planning problem. Specifically, we can transform the
precondition R into the initial state s0 and transform the effect E
into the goal g. Then, what is left is to define the planning
domain �.

To locate the planning domain �, the focus should be put on
the platform specific models (PSM). From Section I, we can
see that no matter whether it uses heterogeneous models [14] or
code templates [13], the assumption is that we can find
platform specific models to reuse. In fact, such kind of reuse is
possible. For example, component-based software development
(CBSD) techniques [18] are concerned with reusing existing
software components to build larger applications at a lower
cost and risk and in less time. Previously verified or tested
components serve as building blocks to construct reliable and
dependable application systems. As another example, semantic
Web services [10] are loosely coupled with each other and can
be easily reused.

256

Figure 1 shows how AI planning can be used to connect
functional and dynamic modeling. In the first step, the
specifications of use cases are transformed into planning
problems. In the second step, AI planner works on the planning
domain, which is an abstraction of PSMs, to find a plan.
Finally, the generated plan is represented as a UML sequence
diagram or activity diagram. It needs to be emphasized that the
generated plan is based on PSMs and the designers may need to
perform some abstractions so that the dynamic models will
represent PIMs. In other words, the last step may require
human’s involvement.

Component
Repository

�R, E��

�s0, g, ���

AI Planner

…
 …

Planning
Doman

…

Functional
Models

AI Planning

Dynamic
Models

Figure 1. Using AI Planning to Connect Functional and Dynamic Modeling

D. An Advanced Program Generation Framework
Based on the functional and dynamic models, we can start

to build the object models. UML class diagrams are commonly
used for object modeling. As discussed in Section I, object
models only represent the static aspects of the system. This is
the reason why existing MDD approaches are only good at
generating the infrastructural code (i.e., only include the
definitions of classes and declarations of operations without
implementations of the operations).

Component
Repository �R, E��

�s0, g, ���

AI Planner
Planning
Doman

PIM

PSM

Infrastructure
Code

Business
Code

MDA

Figure 2. A Generic Program Generation Framework

In [3], we proposed a conceptual framework for automated
code generation including AI planning, MDA, and Component-
based software development (CBSD). Here, we generalize the
framework, which is shown in Figure 2. MDA and AI planning
are loosely coupled through specification transformations. The

principle of such coupling comes from the fact that we can
perform functional decomposition so that the high-level use
cases can be decomposed into lower level use cases. Such
functional decomposition stops when the use cases represent
the operations defined in classes. Therefore, the semantics of
the operations are also formalized as �R, E�, i.e., the
precondition and effect.

The planning domain is abstracted over the component
repository. The implication is that existing components need
some kind of formal specification. For example, the ontology
language OWL-S [8] models a Web service as a 4-tuple,
namely, inputs, outputs, precondition, and effects. Similarly,
we proposed the concept of code patterns [2][7], which
captures the typical usages of components and defines their
possible calling sequences. The semantics of a code pattern is
also specified with preconditions and effects.

From Figure 2, we can see that code is classified into two
categories, namely, infrastructural code and business code.
MDA is responsible for generating the infrastructural code
through model transformation, i.e., from PIM to PSM and,
then, from PSM to code. On the other hand, the AI planning
based subsystem is responsible for generating the business
code. Specifically, this is achieved through automatically
generating the glue code needed to meet a given specification
by assembling the system from existing components.

E. An Implementation of the Framework
We implemented the generic program generation

framework with some specialized techniques. Specifically, we
use IBM Rational Rose [12] for the MDA platform. Strictly
speaking, Rational Rose is not designed for MDA. However,
with its excellent modeling and code generation capability, it at
least possesses the basic features of MDA.

For the reuse of existing components, we use code patterns
[2][7], a component-based software development (CBSD)
technique. The definition of code pattern is as follows.

Definition 4 (Code Pattern). A code pattern cp is a named
functional unit that captures the typical structure and
composition of a set of components. cp is represented by a
triple cp = (i, b, c), where cp is the pattern name, i is the
interface, b is the body, and c is a pair of precondition and
effect {R, E}. The functionality of a pattern cp can be
represented as {R}cp{E}.

The pattern body b is a code template that captures the
typical way of using components. For example, we need two
lines of code in Java to locate a Web service with the service
stub, which is shown as follows.

?Service locator = new ?ServiceLocator();
? locservice = locator.get?();

Here, “?” represents the service name. In the first step, the
service locator is created and in the second step, an instance of
the service is obtained. The use of code patterns can
significantly reduce the chance of repeatedly writing similar
code segments.

The pattern interface i defines all the parameters including
the input parameters Pin that are used to instantiate the pattern

257

body b and the output parameters Pout that are used to return the
computation results.

Besides the formal semantic specification, code patterns
have another major difference from a code template, which is
the use of pattern operators. There are three pattern operators,
namely, concatenate, splice, and reverse, defined over code
patterns to facilitate glue code generation [2].

For AI planning, we use our own AI planner, FIP [4]. FIP is
three orders of magnitude faster than other state-of-the-art AI
planners and, hence, is well suited for automated code
generation.

III. CASE STUDY
In this section, we assess the proposed comprehensive

MDD approach through a Web-based E-Government
inspection system. Assume that a city government has already
developed a backend application system. The central business
of the application system is related to inspections of housing
foundations, fire alarms, and so on. Inspectors can create,
reschedule, and cancel inspections. They can also make
itineraries on a specific day to conduct inspections that are
scheduled on that day. All these functionalities are supported
by different Web services in the application system. Now, the
city government wants to develop a Web-based system to
provide a bridge between the inspectors and the backend
application system. Figure 3 shows the overall picture of the
whole system.

Backend
Application

System

Web services

LAN/Internet

Web-based
Inspection
System

Browser

Figure 3. Overall System Structure

The major Web services involved in the system are listed in
Table I.

TABLE I. MAJOR WEB SERVICES INVOLVED IN THE SYSTEM

Service Comment

Authenticate Require users to provide user names
and passwords and check their validity

Create Inspection Create a new inspection
Reschedule
Inspection Change the inspection date/time.

Cancel Inspection Remove an inspection from the system
Locate Inspection Find a particular inspection

Search Inspections
List a set of inspections according to
some search criteria, e.g., date,
location, etc.

GIS Given a set of locations, return an
itinerary that is time and fuel efficient

Fax Fax itinerary or inspections to users
Email Email itinerary or inspections to users

Callback Call users to notify them about the
itinerary or inspections

Reserve a car The government provides a car for
inspectors to carry out the inspections.

Car rental
If the internal cars are all scheduled on
a specific day, the inspector can rent a
car instead.

Reserve Taxi The inspector can also reserve a taxi
for transportation.

Credit card payment Related to car rental or taxi reservation

A. Web-based E-Government Inspection System
The goal of this case study is to develop a Web-based

inspection system. Here, the backend application system
(consisting of all the Web services) is outside of the Web-based
inspection system. The inspection system consists of four
subsystems, namely, inspection management, itinerary,
notification, and transportation. Figure 4 illustrates the top-
level system structure.

E-Government

Inspection System

Inspection Itinerary Notification Transportation

Figure 4. Top Level System Structure

The inspection management subsystem enables the
inspectors to create, reschedule, cancel, and query inspections.
This subsystem provides the main business functionalities and
interacts with other subsystems to provide convenient services
to inspectors. The itinerary subsystem provides the GIS
(Geographic Information System) service. An inspector usually
has to inspect several locations in one day. The inspector inputs
the specific date for inspections and uses the search inspections
service to locate the set of inspections scheduled on that day.
Then, the GIS service provides an itinerary that should be
efficient in terms of both the time and the distance traveled.

The notification subsystem enables inspectors to fax, email,
or callback their inspection query results or itinerary details to
themselves for their own record. After the inspection itinerary
is prepared, the inspector needs to reserve a car. Normally, the
government provides the cars to inspectors. In case all the cars
are currently being used, the inspector can choose to rent a car
or reserve a taxi to carry out the inspections. Inspectors can pay
the related fees with the credit card payment service.

In addition, the user authentication is mandatory, i.e., a user
is required to provide his/her user name and password to
continue to operate the system.

B. Component Repository.
 In this case study, we map Web services into code patterns.

In industry, the typical way of invoking Web services is shown
in Figure 5. The clients use client stubs to invoke Web services.
The functionality of each Web service is delegated to the client

258

stub, which is stored locally with the client programs. To users,
it seems that the Web service itself is stored locally and the
invocation of the Web service is just like a regular function
call. Then, the client stub wraps up the request as a SOAP
message and sends it to the server stub.

Therefore, the typical ways of invoking a Web service
through client stubs can be modeled as code patterns.
Typically, the capability of a Web service is modeled with a 4-
tuple, namely, �inputs, outputs, preconditions, effects�, i.e., �I,
O, P, E� [8]. We have formulated a direct mapping from a Web
service to a code pattern. Specifically, I is mapped to the input
parameters Pin defined in the code pattern interface i; O is
mapped to the output parameters Pout; P is mapped to the
precondition R; and E is mapped to the effect E. For code
patterns, there is an extra field, which is the pattern body b. The
typical ways of using the client stub can be put into the pattern
template to facilitate code generation. Therefore, a Web service
is mapped perfectly into a code pattern.

Server

Web Service Server
Stub

Client

Client
Stub

Client
Application

Figure 5. Invocation of Web Service

C. High-Level System Design

Figure 6. The Use Cases for the Inspection Management Subsystem

Use cases are the first tangible things that stakeholders
interact with. Due to space limitation, we only show the use
case diagram for the inspection management subsystem (in

Figure 6). The use case diagram includes five use cases,
namely, create an inspection, reschedule an inspection, delete
an inspection, locate an inspection, and search a set of
inspections according to a certain criteria.

1) Specifying semantics of use cases. As discussed in
Section II.B, preconditions and effects are imposed on a use
case to specify the conditions under which the use case can be
applied and what effects the use case is expected to generate.
For example, the precondition for the use cases of “Locate an
inspection” is the availability of the user name, password, and
the confirmation number of the inspection. The effect is that
the inspection is located or does not exist.

2) Deriving dynamic models. As illustrated in Figure 1, the
specifications of use cases are transformed into AI planning
problems. Then, the AI planner works on the planing domain
(which is derived from the component repository) to look for
plans for these planning problems. The plans can be
interpreted in many different ways, such as UML activity
diagrams or UML sequence diagrams. For example, Figure 7
shows the activity diagrams for use cases of “Locate an
inspection” and “Delete an inspection”. Figure 8 shows the
sequence diagram for the use case of “Delete an inspection”.

The translation of the generated plans into the
corresponding dynamic models (e.g., activity diagrams and
sequence diagrams) was manually done in this case study.
However, it is possible to automate this process in the future
study.

Figure 7. Activity Diagrams for Use Cases of “Locate an inspection” and

“Delete an inspection”.

Figure 8. Sequence Diagram for “Delete an inspection”

Locate an inspection

Create an inspection

Delete an inspection

Reschedule an inspection

Inspector

Search inspections

259

3) Building the object models. Based on the functional and
dynamic models, we built the object models. Especially, a
sequence diagram depicts a flow of events consisting of
objects participating in a use case. The flow gives us a clear
picture about the business logics of the Web-based inspection
system. They enable us to deepen the understanding of the
system and provide insights to design the correct PIM. In
addition, the dynamic models help us identify objects that will
be used in the object modeling. For example, the flow of
events in Figure 8 leads to the following PIM design shown in
Figure 9. The model depicted as the square shape in Figure 9
represents the client side Web page and the models depicted as
the gear shape represent server side or dynamic Web pages. It
should be noted that these models for Web pages are
independent of any implementations. For example, the server
pages (i.e., depicted as the shape of gear) can be implemented
with JSP (Java Server Page), ASP (Active Server Page), or
PHP.

Figure 9. PIM for “Locate an inspection” and “Delete an inspection”

Combining all such pieces together, we are able to
generalize the design of PIMs and their relationship. Figure 10
shows the major part of the PIMs that is designed for the E-
Government system. The relationships among different PIMs
are also defined.

Figure 10. Major Parts of PIMs

D. Code Generation
As discussed in Section I, we classify code as

infrastructural code and business code. To generate the
infrastructural code, we rely on Rational Rose’s code
generation capability. Both client-side static HTML Web pages
and the skeletons of server-side dynamic server pages are
automatically generated. This is the static aspects of the E-
Government inspection system because Rational Rose cannot
generate business code for the server pages.

To generate business code, we need to specify the
semantics of PIMs so that the specifications can be transformed
into AI planning problems. As discussed in Section II.D,
preconditions and effects are used to specify the semantics of
the PIMs. Since the models are mostly obtained from the plans
returned by the AI planner, their semantics can be found from
the corresponding actions in the plans, i.e., use the
preconditions and effects of these actions in the corresponding
models.

After the semantics of PIMs are formally specified, we
transform the specifications into AI planning problems. Then,
we run the AI planners to generate plans, based on which the
business code is synthesized over the component repository
(see Section III.B).

In summary, AI planning plays two critical roles in the
proposed MDD-based approach. First, AI planning connects
the functional modeling with dynamic modeling in the high-
level design. Second, AI planning-based synthesis can generate
business code based on the semantics of object models.

IV. DISCUSSION
In this section, we first discuss the insights learned from the

case study. Then, we identify a few limitations of the study.

A. Insights
Through the case study, we can see that it is possible to

automatically generate the complete system. To ensure this, the
following requirements must be satisfied.

1) Functional and dynamic modeling must be integrated
into object modeling. Object modeling alone is insufficient.
This is the major reason why existing MDD approaches are
not good at generating business code. Object modeling only
represents the static aspects of the system. We must integrate
functional and dynamic modeling into object modeling so that
both business code and infrastructural code can be
automatically generated.

2) The techniques imposed upon MDD should be
unintrusive . In other words, any techniques imposed on MDD
should be loosely coupled with MDD. This requirement
ensures that the benefits of MDD will not be compromised.
For example, our proposed approach uses AI planning, which
interacts with MDD indrectly through specification
transformations.

3) Artificial intelligence techniques are mandatory. It is a
violation of the MDD principles if we manually put the detail-
level templates to the “appropriate” places because otherwise
designers and developers cannot simply focus on the high-

260

level problem solving, but will have to worry about the low-
level technical details as well. Therefore, artificial intelligence
techniques will be helpful in “intelligently” locating the low-
level details and assembling these details into the appropriate
places. In our case, we use AI planning to select and organize
existing components to achieve this goal.

4) Code reuse. Irrespective of whether we use
heterogeneous models, FOP, or the approach proposed in this
paper, code reuse is critical in code generation.

B. Limitations of the Case Study
When specifying the semantics, we used the combination of

XML and PDDL [9], an AI planning specification language.
Figure 11 shows how we specify the semantics of a model in
Rational Rose. In fact, OWL-S [8] uses a similar approach by
mixing XML and formal specification languages. However,
such methods may impose extra burdens on designers and
developers because they have to know PDDL as well as other
high-level specification languages. In addition, such methods
may increase the possibility of failing to find a solution simply
because the way in which the specification is written may not
match the specifications of components in the component
repository. Therefore, it would be beneficial if the knowledge
in the component repository is presented in a way that can be
easily used during the specification. Ontology may help
mitigate this problem. A standardized high-level specification
language may help reduce the workload on software designers
and developers.

Figure 11. Example of Formal Specification in Rational Rose

V. RELATED WORKS
MDA (Model-Driven Architecture) [6][11] has attracted

wide attention. The developers start from the design of high
level PIMs (Platform Independent Models) and use
transformations to map models to a lower level. Hence,
developers can concentrate on the development of PIMs, which
are a higher level of abstraction than the actual code. PSMs are
generated from PIMs through transformation. Also, the codes
are in turn generated from PSMs. These processes can be
automated to increase productivity. In addition, by focusing on
PIMs, developers can put more efforts on dealing with business
issues, which is another favorable factor for speeding up the
development process. However, transformations are good at

generating the static infrastructural code instead of the
behavioral business code.

To overcome the limitation of the transformation method,
the concept of “heterogeneous models” [14] is introduced to
empower MDA to generate business code. In this type of
model, PIM and PSM are still specified with the original
modeling language. Segments written in low-level languages
are embedded in the appropriate parts of the high-level
components. The major advantage of this approach is that
existing code can be reused and business code can be
generated. However, the mix of high-level models and low-
level segments may make the design difficult to understand and
may neutralize MDA’s benefits of portability and
documentation.

Frame oriented programming (FOP) [13] was proposed to
generate both infrastructural and business code. This approach
is used in industry and is an effective form of template driven
code generation. The business code generation is based on the
reuse of existing templates through name matching, i.e., the
names of the operations in the specification should match the
names of existing templates. Name matching may lose the
semantic meaning and, therefore, lead to errors.

VI. CONCLUSIONS AND FUTURE WORK
In this paper, we point out a missing link between the high-

level models and the business code in MDD. We analyze the
root cause of the missing link: Object modeling alone is
insufficient in generating a complete system. To establish the
link, we present a comprehensive software development
approach based on MDD that is able to generate both
infrastructural code and business code automatically.
Specifically, we use AI planning to connect functional,
dynamic, and object modeling together in MDD. AI planning is
loosely coupled with MDD and, therefore, does not hurt the
MDD’s advantages of portability and documentation.

Infrastructure
Code

 Business
Code

Manually
Composed Code

MDA

AI planning and
Component-

based generation

Developers

Final Code

Figure 12. Sources to Obtain the Final Code [3]

To evaluate the proposed approach, we conducted a case
study to automatically generate a Web-based E-Government
inspection management system. We showed how to use AI
planning to facilitate the construction of dynamic models (e.g.,
activity diagrams and sequence diagrams) from the functional
models (e.g., use cases). Based on the functional models and
dynamic models, we constructed the object models. The
semantics of the object models were formally specified and
subsequently transformed into AI planning problems.

261

Eventually, as shown in Figure 12, the infrastructural code was
generated by MDA and the business code was generated by AI
planning and component-based program generation approach.
Although the code was completely generated in this case study,
in practice it is possible that some parts of the system may not
be automatically generated. In such cases, software developers
will have to manually develop the code to fill in the blank.

In the next step, we will enhance the proposed approach to
overcome the limitations discussed in Section IV.B, i.e., to
make the knowledge of the underlying component repository
readily and easily available in the high-level design.

REFERENCES
[1] B. Bruegge and A. H. Dutoit, Object-Oriented Software Engineering:

Using UML, Patterns and Java, 3rd Edition, Prentice Hall, 2009
[2] J. Fu, F. B. Bastani, and I. Yen, “Automated AI Planning and Code

Pattern Based Code Synthesis”. ICTAI 2006, pp. 540–546.
[3] J. Fu, F. B. Bastani, I. Yen, “Model-Driven Prototyping Based

Requirements Elicitation”, The 14th Proceedings of Monterey
Workshop, 2007.

[4] J. Fu, V. Ng, F. B. Bastani, and I. Yen, “Simple and Fast Strong Cyclic
Planning for Fully-Observable Nondeterministic Planning Problems”,
IJCAI-2011, pp. 1949–1954.

[5] A. Gerber, M. Lawley, K. Raymond, J. Steel, and A. Wood,
“Transformation: The Missing Link of MDA”, Proceedings of the 1st
International Conference on Graph Transformation, Barcelona, Spain
(2002), pp. 90–105.

[6] A. Kleppe, J. Warmer, and W. Bast, MDA Explained: The Model
Driven Architecture: Practice and Promise. Addison-Wesley, 2003.

[7] J. Liu, F. B. Bastani, and I. Yen, Code Pattern: An Approach for
Component-Based Code Synthesis, Proceeding of the 7th World
Multiconference on Systemics, Cybernetics and Informatics, Orlando,
FL, pp. 330–336, 2003.

[8] D. Martin et al, OWL-S: Semantic Markup for Web Services,
http://www.w3.org/Submission/OWL-S/, 2004

[9] D. McDermott, et al., “The PDDL Planning Domain Definition
Language”, The AIPS-2004 Planning Competition Committee, 2004.

[10] S. McIlraith, T.C. Son, and H. Zeng, “Semantic web services”, IEEE
Intelligent Systems, 16(2):46–53, March/April 2001.

[11] Object Management Group, “MDA Guide: Version 1.0.1”, OMG
document omg/03–06–01, 2005.

[12] Rational Rose Family, IBM/Rational Software Corp., 2003, available:
www.rational.com/products/rose/index.jsp.

[13] F. Sauer, “Metadata driven multi-artifact code generation using Frame
Oriented Programming”, OOPSLA, 2002.

[14] B. Selic, “Model-driven development: Its essence and opportunities”,
9th IEEE International Symposium on Object and component-oriented
Real-time distributed Computing (ISORC), pp. 313–319, 2006

[15] S. Sendall and W. Kozaczynski, “Model Transformation: The Heart and
Soul of Model-Driven Software Development”, IEEE Software, 20, No.
5, 42–45 (2003).

[16] T. Stahl, M. Völter, J. Bettin, A. Haase, and S. Helsen, Model-Driven
Software Development: Technology, Engineering, Management. John
Wiley, Chichester (2006)

[17] Object Management Group, MDA Guide, Version 1.0.1, OMG
document omg/03-06-01, 2005.

[18] S. S. Yau and N. Dong, “Integration in Component-based Software
Development Using Design Patterns”, The Twenty-Fourth Annual
International Computer Software and Applications Conference,
COMPSAC, Taipei, Taiwan, 369.

262

