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Abstract With the rapid growth in the development of sophisticated modern software

applications, the complexity of the software development process has increased enor-

mously, posing an urgent need for the automation of some of the more time-consuming

aspects of the development process. One of the key stages in the software development

process is system testing. In this paper, we evaluate the potential application of AI planning

techniques in automated software testing. The key contributions of this paper include the

following: (1) A formal model of software systems from the perspective of software testing

that is applicable to important classes of systems and is amenable to automation using AI

planning methods. (2) The design of a framework for an automated planning system (APS)

for applying AI planning techniques for testing software systems. (3) Assessment of the

test automation framework and a specific AI Planning algorithm, namely, MEA-Graphplan

(Means-Ends Analysis Graphplan), algorithm to automatically generate test data. (4) A

case study is presented to evaluate the proposed automated testing method and compare the

performance of MEA-Graphplan with that of Graphplan. The empirical results show that

for software testing, the MEA-Graphplan algorithm can perform computationally more

efficiently and effectively than the basic Graph Planning algorithm.
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1 Introduction

During system or integration testing of software systems, it is not only necessary to

understand the properties of each of the subsystems and identify the possible interactions

and conflicts between subsystems, but it is also required to test the safety, security, and

reliability of the system in specific states. The test engineer needs to test the system in

states that are closer to forbidden regions, to see if any state transitions will cause the

system to enter an unsafe state (Yen, Bastani, Mohamed, Ma, & Linn, 2002). To

accomplish this, the test engineer needs to generate test cases manually to check whether

the system reaches an unsafe state. Manual test data generation can consume a large

amount of time and effort, and may not guarantee that the system will never reach the

specified unsafe state.

Automated test data generation can be used to generate test data (a sequence of state

transitions) that take the system from the current state to some desired state (Mayrhauser &

Hines, 1993; Mayrhauser, Mraz, & Walls, 1994; Mayrhauser, Scheetz, Dahlman, & Howe,

2000). A variety of automated testing tools currently exist but most of these tools cannot

ensure that the generated test data will take the system to the desired state. AI planning

techniques offer great promise because they emphasize goals, i.e., sequences of actions

(e.g., plans or test data) are generated specifically to fulfill some purpose. Therefore, the

similarities of plans and test cases are that they are both goal-oriented, i.e., both need to

conform to the syntactic requirements of the actions/commands and the semantic inter-

actions between actions/commands. The mechanisms of planning are thus ideally suited to

test case generation (Howe, Mayrhauser, & Mraz, 1997). Some of the AI planning tech-

niques, including plan-graph planning (Blum & Furst, 1997), plan-space planning (Pen-

berthy & Weld, 1992), HTN planning (Erol, Hendler, & Nau, 1994; Nau, Cao, Lotem, &

Muñoz-Avila, 1999), and temporal-logic planning (Bacchus & Ady, 2001; Bacchus &

Kabanza, 1996, 2000), can be potential planning techniques for automating the testing

process.

Among these planning techniques, Blum and Furst’s Graphplan algorithm (1997) is a

simple, elegant algorithm based on a technique called Planning Graph Analysis that yields

an extremely speedy planner that, in many cases, is orders of magnitude faster than the

total-order planner Prodigy (Veloso et al., 1995) and the partial-order planner UCPOP

(Penberthy & Weld, 1992). But in the basic Graphplan algorithm, during the graph

expansion phase, the planning graph may contain many of the actions that do not con-

tribute to the goal. Thus, the graph expansion algorithm is oblivious of the goal of the

planning problem. As a result, during complex system testing, it may experience a higher

probability of state-space explosion during the graph expansion phase of the planning.

MEA-Graphplan (Kambhampati, Paeker, & Lambrecht, 1997) extends the basic Graphplan

algorithm by adapting means-ends analysis (McDermott, 1996) to Graphplan, which makes

the graph expansion phase goal-oriented. MEA-Graphplan involves first growing the

planning graph in the backward direction by regressing goals over actions, and then using

the resulting regression-matching graph as a guidance for the standard Graphplan algo-

rithm.

In this paper, we propose a test automation framework for applying AI planning

techniques for testing software systems and using a comprehensive example to describe

how MEA-Graphplan automatically generates test data for the software system. The pri-

mary contributions in this paper are as follows:
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1. A formal model of software systems is presented from the perspective of software

testing that is applicable to important classes of systems and is amenable to automation

using AI planning methods. The formal model of software systems includes a model of

the system, a model of the actions, a model of the observations, and a model of the

specification objectives of the system. We also define a software system in terms of a

state transition system R whose description acts as input parameters to the planning

system.

2. The design of a framework for an APS is presented for applying AI planning

techniques for testing software systems. Our proposed framework, APS, consists of a

Planning Domain Generator that maps software parameters to planning parameters,

and an AI Planner that generates a plan or sequence of actions for a specific planning

problem. We also formalize definitions required for defining the planning problem for

software systems and identify certain restrictive assumptions for our APS.

3. We assess the test automation framework and a specific AI Planning algorithm,

namely, MEA-Graphplan algorithm, to automatically generate test data. A compre-

hensive example describes how we derive a state transition system R for the List
abstract data type (ADT), develop planning operators for the specified planning

domain, and apply the MEA-Graphplan to generate an optimized planning graph and

perform solution extraction for a planning problem.

4. A case study is presented to show how the proposed automated testing method can be

applied to a robot simulation system. The performance of MEA-Graphplan is

evaluated by comparing it with the basic Graphplan. The empirical evaluation shows

that the MEA-Graphplan algorithm can perform computationally more efficiently and

effectively than the basic Graph Planning.

The rest of this paper is organized as follows: In Sect. 2, we briefly review various AI

planning techniques. In Sect. 3, we formally present the MEA-Graphplan algorithm and

explain it in detail. In Sect. 4, we present the conceptual model of a software system from

the perspective of testing. In Sect. 5, we propose the automated planning system (APS)

framework and provide a comprehensive example for the List ADT. Section 6 describes a

case study using the proposed automated testing method and presents the performance

comparison of MEA-Graphplan and the basic Graphplan. In Sect. 7, we briefly review the

related works and in Sect. 8, we summarize the paper and identify some future research

directions.

2 Review of AI planning techniques

A basic planning problem is a triple P = (O, s0, g), where O is a collection of operators, s0

is a state (the initial state), and g is a set of literals (the goal formula). A plan is any

sequence of actions < a 1, a2, ..., an > such that each ai is an instance of an operator in O.

Nearly all AI Planning procedures are search procedures. Different planning procedures

have different search spaces.

The Graphplan algorithm (Blum & Furst, 1997) alternates between two phases, namely,

graph expansion and solution extraction. In the graph expansion phase, the planning graph

is extended forward in time until it has achieved a necessary (but perhaps insufficient)

condition for plan existence. The solution extraction phase then performs a backward-

chaining search on the graph, looking for a valid plan that can satisfy the goals. If no plan

is found then the cycle repeats by further expanding the planning graph. The planning
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graph generated is a directed, leveled graph with two kinds of nodes, i.e., proposition nodes

and action nodes, arranged into levels as shown in Fig. 1. Even-numbered levels contain

proposition nodes (i.e., ground literals), odd-numbered levels contain action nodes (i.e.,

action instances) whose preconditions are present (and are mutually consistent) at the

previous level, and the zeroth-level of the planning graph consists of proposition nodes

representing the initial conditions. Edges connect proposition nodes to the action nodes (at

the next level) whose preconditions mention those propositions, and additional edges

connect action nodes to subsequent propositions made true by the actions’ effects as shown

in Fig. 1. Actions that do nothing to a proposition are called maintenance actions that

encode persistence.

The planning graph constructed during the planning process makes the mutual exclusion

(mutex) relation among nodes at the same level explicitly available. Also, a valid plan

found during the solution extraction phase is a planning-graph where actions at the same

level are not mutex, each action’s preconditions are made true by the plan, and all the goals

are satisfied. If no plans are found, then the termination condition for Graphplan states that

when two adjacent proposition levels of the forward planning-graph are identical, i.e., they

contain the same set of propositions and have the same exclusivity relations, then the

planning-graph has leveled off and the algorithm terminates with a ‘‘No-Plan Exists’’

output signal (Blum & Furst, 1997). Graphplan planning is both sound and complete.

In plan-space planning (McAllester & Rosenblitt, 1991; Penberthy & Weld, 1992;

Weld, 1994), each node of the search space is a partial plan having a set of partially

instantiated actions and a set of constraints. It makes more and more refinements until we

have a solution where the solution is a node (not a path). It is also called partial order
planning or least commitment planning. It is both sound and complete.

HTN planning (Barrett & Weld, 1994; Erol, Hendler, & Nau, 1994; Nau et al., 1999;

Yang, 1990) is a type of problem reduction involving decomposition of tasks into subtasks.

Each task is associated with a set of methods. Each method will have constraints associated

with it. It resolves interactions and, if necessary, backtracks and tries other decompositions

during plan generation. In HTN planning, plans may interleave subtasks of different tasks.

If the precondition-inference procedure in HTN planning is sound and complete, then HTN

planning is also sound and complete.

Among these planning techniques, the Graphplan algorithm is an appropriate planner

that provides a better understanding of the properties of the subsystems. This is because the

planning graph constructed during the planning process makes useful constraints, such as

interactions and conflicts among subsystems. It also yields an extremely speedy planner

that, in many cases, is orders of magnitude faster than total-order and partial-order planners.

0 i -1   i i + 1 

Fig. 1 The Planning graph with action nodes represented by solid-squares, proposition nodes represented
by dashed-squares, horizontal gray lines between proposition nodes representing the maintenance actions
that encode persistence, and solid lines from proposition nodes to action nodes and vice versa representing
the preconditions and effects, respectively
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3 MEA-GraphPlan planning

In the basic Graphplan algorithm, during the graph expansion phase, the planning graph

with n-levels contains only those actions that could possibly be executed in the initial state

or in a world reachable from the initial state. But many of the actions in the planning graph

may be irrelevant to the goal at hand. Thus, the graph expansion algorithm is not informed

of the goal of the planning problem (Garagnani, 2000; Kambhampati, Paeker, & Lambr-

echt 1997; McDermott, 1996; Nebel, Dimopoulos, & Koehler, 1997; Weld, 1999) and, as a

result, during system testing of complex systems, the graph expansion phase demonstrates

a higher probability of state-space explosion.

MEA-Graphplan adapts means-ends analysis (McDermott, 1996) to Graphplan in order

to make it goal-oriented. MEA-Graphplan (Kambhampati, Paeker, & Lambrecht, 1997)

involves first growing the planning graph in the backward direction by regressing goals

over actions, and then using the resulting regression-matching graph as guidance for the

standard Graphplan algorithm. More specifically, regression-matching graph shows all

actions that are relevant at each level of the forward planning-graph. Thus, we can now run

the standard Graphplan algorithm making it consider only those actions that are present at

the corresponding level of the regression-matching graph. The MEA-Graphplan algorithm

is shown in Fig. 2.

During regression-matching graph generation, we consider only those sub-paths that can

reach the initial condition from the sub goal. Also, while determining the relevant action-

set we always include the ‘‘no-action’’ operation. In Sect. 5.5, we will illustrate how the

MEA-Graphplan algorithm can be applied to generate an optimized planning graph and

perform solution extraction for a planning problem.

4 A testing-oriented model of software systems

In order to apply AI planning techniques for testing software systems, the conceptual

ingredients of a software system should include a model of the system (possible states), a

model of how the system can be changed (effects of actions), a model of observation of the

system, and a specification of the objectives (global constraints, forbidden regions in the

system). For example, if we define our software system as an ADT or as a process-control

Loop
 Generate Regression-matching graph:

Construct the “regression-matching graph” by regressing each goal over actions till it 
reaches initial condition. 

 Determine relevant action-set: 
Using “regression-matching graph” determine the relevant action-sets for each of the
corresponding action-levels.

 Graph expansion:
Construct the “forward-planning graph” considering only the specified actions at the 
corresponding action-levels.

 Solution extraction:
Do backward-chaining search, looking for a correct plan 
If we find one, then return it,
Else, the last proposition-level represents the set of new initial conditions. 

Repeat

Fig. 2 MEA-Graphplan algorithm
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system (PC), then a conceptual testing-oriented model of the system can be represented as

shown in Fig. 3.

O�functions (operation-performing functions) and Actuators represent methods in each

class of the software system that cause transitions in the state space. Also, V�functions
(value-returning functions) and Sensors represent methods in each class of the software

system that return some information about the current value of the state space. Software

system specification represents the standard pre-/post-conditions or algebraic specifications

for methods in each class of the software system.

Let us define our software system as a state transition system R:

R = {S, A, T, C, f} where,

S = {s1, s2, ..., sm} is a set of states represented using V-functions/Sensors,

A = {a1, a2, ..., an} is a set of actions represented using O-functions/Actuators,

T = Testing requirements for the software system, e.g., test how each O-function affects

the V-function,

C = Global constraints (corresponding to forbidden regions in the state space), e.g.,

operators in ADT don’t create or destroy the main object.

f : S · A ? 2S is a state transition function.

The description of the state transition system R acts as input parameters to the planning

system as discussed in the next section.

5 Automated planning system

In order to build a general framework for applying AI planning techniques for testing

software systems, we need to understand what are the key input requirements of the

planning system, what are the general considerations needed for defining a planning

problem for a software system, and what are the outputs that the planning system

generates.

5.1 Automated planning system structure

We propose an APS framework consisting of two components, namely, Planning Domain
Generator and AI Planner as shown in Fig. 4.

System State
ADT(Abstract Data Type) 

PC(Process Controller) 

Actions
ADT(O-functions)

PC (Actuators)

Observations
ADT(V- functions) 

PC (Sensors)

Specifications
ADT(Effect of O-fns on V-fns)

PC (Effect of Actuators on Sensors)

Fig. 3 Conceptual testing-oriented model for software systems
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5.1.1 Planning Domain Generator

The component Planning Domain Generator maps software parameters (elicited from the

state transition system S) to the planning parameters that are passed as inputs to the

component AI Planner.

We define the software parameters as {S0, A, T0, C,f} where S0 � S and T 0 � T , and

define the planning parameters as {O, s0,g}, where O is a collection of operators, s0 is the

initial state, and g is the goal state for a specific planning problem.

We formalize some of the definitions required for defining the planning problem for the

software system.

Definition 1, Initial state of a software system For any planning problem, the initial state

s0 is a set of propositions (literals) called the initial conditions (Blum & Furst, 1997), e.g.,

the predicates over V-functions for ADTs or predicates over Sensors for PCs.

We represent a software system as a collection of finite-state machines where each

finite-state model represents the current state of a specific sub-module within it.

Definition 2, Operator set of a software system Each operator defines some domain

behavior and consists of an operator name, parameters, preconditions, and effects (add/

delete effects). For ADTs, the operator set O is defined using each relevant O-function as

an operator in the planning domain. Similarly, for PCs the operator set is defined using

relevant Actuators for the system.

While defining an operator’s preconditions and effects, the algebraic specification of

ADTs are used. Similarly, for PCs, an Actuator’s pre-/post-conditions are used.

Definition 3, Goal state of a software system For any planning problem, the goal state g
is represented using the testing requirements (T) and the global constraints (C) that need to

be met during software testing.

Our current APS can be applied to test software systems with certain restrictive

assumptions as discussed in the following definition.

Definition 4, State transition system A state transition system is a tuple R = {S, A, T, C,

f} where S represents a finite set of states, A represents only controllable actions (i.e., no

uncontrollable event exists), the goal state g represented using T and C are always re-

stricted goals (i.e., g � S), and f represents deterministic state-transition functions (i.e., no

uncertainty exists).

5.1.2 AI Planner

The component AI Planner takes the planning parameters {O, s0,g} as an input for a

specific planning problem and generates a plan or sequence of actions < a1, a2, ..., an >

O

                                        s0                              

 g

APS

Planning
Domain

Generator
AI

Planner

Plan = 
a1,.. an

Description 

of Σ SystemΣ

Fig. 4 Automated planning system
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where each ai is an instance of an operator in O it uses, such that the goal state is achieved.

The AI Planner component can use any AI planning technique for generating the plan since

all the AI planning techniques take the planning parameters {O, s0, g} as the standard

input.

5.2 Example: Testing an ADT

In order to illustrate how AI planning techniques can be used to test software systems, we

will show how to test an ADT. Consider an ADT List L having the following methods:

create(), append (L, e, i), remove (L, i), delete(), length (L), and ith (L, i). The algebraic

specification for each method in the List ADT is shown in Fig. 5.

We define List ADT as a state transition system R = {S,A, T, C, f} where,

S = set of states represented using V-functions: { length(L), ith(L, i), 1 � i � length(L)},

A = set of actions represented using O-functions: { create(), append(L, e, i), remove(L,

i), delete()},

T = Test how each O�function affects the V�functions of the List ADT,

C = Operators do not create or destroy the main object.

The description of the state transition system R acts as input parameters to the planning

system. APS component Planning Domain Generator maps these input parameters {S0, A,

T0, C, f}, where S0 � S; T 0 � T , to the planning parameters {O, s0, g} that are passed as

input to the component AI Planner. Among these parameters, S0, C and T0 are mapped to s0

and g, and A and f are mapped to O. For our example, the component AI Planner uses the

MEA-Graphplan technique.

Fig. 5 Algebraic specification of List ADT
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5.3 Domain analysis

In the planning domain, the List object can be viewed as an ordered set of element objects

where each element object is at a particular position in the List. Using simple predicates
over the V-functions, we can easily define the current state of the List object.

Consider the List object shown on the left hand side of Fig. 6. We can define its

current state using predicates: {(length = 4), (at A1), (at B2), (at C3), (at D4)}, i.e., the

List object length is 4, element object A is at position 1, element object B is at position

2, and so on.

As per the algebraic specification, method append (L, e, i) increases List object length

by 1, appends object ‘‘e’’ at position ‘‘i’’ in the List, and shifts all the element objects at

positions j � i by one-place to the right. The effect of method append(L, E, 3) on the List

object is shown in Fig. 6. The method remove(L, i) decreases the length of the List object

by 1, removes the element object at position ‘‘i’’ in the List, and shifts all the element

objects at positions j > i by one-place to the left. The effect of method remove(L, 3) on the

List object is shown in Fig. 6.

5.4 Operator definitions

For constructing the operator set O, each relevant O-function of List ADT is defined as an

operator in the planning domain. Since the global constraint(C) states that the operators do

not create or destroy the main object, so we will not have operators for O-functions create
and delete. The operators that were defined for the List ADT, based on its algebraic

specification, are shown in Fig. 7.

Similar to STRIPS-like planning domain (Fikes, & Nilsson, 1971), we define

operators that have a name, parameter-list, preconditions, and effects. Both the pre-

conditions and effects are conjunctions of literals or propositions, and have parameters

that can be instantiated to objects in the world. We define an action as a fully-

instantiated operator.

Notice that in Fig. 7, unlike a STRIPS representation in which actions are limited to

unconditional-effects, quantifier-free preconditions, and effects, we are using a more

expressive representation. Specifically, we have used universal-quantified-conditional
effect that describes how an action can affect element objects at specific locations in the

List. We also consider the predicate (has-length-increment ?len) as being equivalent-to

(has-length (?len+1)), predicate (at-increment ?y?x) equivalent-to (at ?y (?x+1)), predi-

cate (has-length-decrement ?len) equivalent-to (has-length(?len-1)), and predicate

(at-decrement ?y?x) equivalent-to (at ?y (?x-1)).

A B C D

1 2 3 4

A B D

1 2 3

A B E C D

1 2  54 3 
append(L,E, 3)

remove (L,3)

Fig. 6 List Object affected by actions append(L,E,3) and remove(L,3)
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5.5 Planning problem

Problem: Generate a sequence of actions to bring the List object L from an initial state

where {(length = 3)} to a target state where {(length = 4) and (at A1) and (at D4)}. For the

sake of convenience, we use ‘‘app’’ to denote the operator ‘‘append’’ and ‘‘rm’’ to denote

‘‘remove’’ in the following example.

By applying the MEA-Graphplan algorithm, we proceed as follows:

Step 1: Generate the regression-matching graph by regressing each goal over actions,

till it reaches initial condition. Figure 8 shows the regression-matching graph for the initial

condition set: {(length = 3)}.

Step 2: Using the regression-matching graph, determine the relevant action sets for the

corresponding action-levels. Since there is only one level, so the relevant action set at level

one is as follows:

Relevant_Actions_Level_1 = {app(A,1); app(*,1); app(*,2); app(*,3); app(*,4);
app(D,4); no-op}.

Step 3: Construct the forward planning-graph by considering only the specified actions

at the corresponding action-level and adding in mutex relations. Figure 9 shows the

optimized forward planning graph constructed.

(define (operator append)

: parameters ((element ?e) (place ?j) ( length ?len))
: precondition (:and (less-than-equal ?j ?len))
: effect (:and (has-length-increment ?len) (not (has-length ?len))( at ?e ?j)
(forall (?x - location)

(when (greater-than-equal ?x ?j)
(forall (?y - element)

(when (at ?y ?x)
(and (at-increment ?y ?x) (not (at ?y ?x)))))))))

(define (operator remove)
: parameters ((place ?j) ( length ?len))
: precondition (:and (less-than-equal ?j ?len))
: effect (:and (has-length-decrement ?len) (not (has-length ?len))
(forall (?x - location)

(when (equal-to ?x ?j)
(forall (?y - element)

(when (at ?y ?x)
(not (at ?y ?x)) ))))

(forall (?x - location)
(when (greater-than ?x ?j)

(forall (?y - element)
(when (at ?y ?x)

(and (at-decrement ?y ?x) (not (at ?y ?x)))))))))

Fig. 7 List of operators in the List ADT planning problem

2 (at D 4)

1 app (D, 4, ?len)

0 (len ≥ 3)

2       (len = 4)

0 (len ≥ 3 )

1 app(?e,1,?len)  app(?e,2,?len)  app(?e,3,?len) app(?e,4,?len) 

2 (at A 1)

1 app (A, 1, ?len)

0 (len ≥ 3)

Fig. 8 Regression-match graph with initial conditions at proposition-level 0
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Step 4: Solution extraction fails to find a valid plan, so re-generate the regression-

matching graph by considering the last proposition level as a set of new initial conditions.

Proposition level 2 has the following set of new initial conditions: {(at A1), (at *1), (at
*2), (at *3), (at *4), (len = 4), (at D4), (len = 3)}. Figure 10 shows the subset of the

regression-matching graph for the new initial condition set.

Step 2 Repeated: Using the regression-matching graph, the relevant action set at level 3

is again:

Relevant_Actions_Level_3 = {app(A,1); app(*,1); app(*,2); app(*,3); app(*,4);
app(D,4); no-op}.

Step 3 Repeated: Further grow the initial planning-graph as shown in Fig. 12 till

proposition level 4, considering only the relevant actions at action-level 3 and adding in

mutex relations.

Step 4 Repeated: Solution extraction again fails to find a valid plan, so re-generate the

regression-matching graph. Proposition level 4 has the following set of new initial con-
ditions: {(at A1), (at *1), (at *2), (at *3), (at *4), (at *5), (len = 5), (at D4), (len = 4),
(len = 3)}. Figure 11 shows the subset of the regression-matching graph for the new initial

condition set.

Steps 2 & 3 Repeated: Using the regression-matching graph, the relevant action set at

level 5 includes {rm(1); rm(2); rm(3); rm(4); rm(5); no-op}. Further growing the initial

planning-graph till proposition level 6, and performing the solution extraction phase of

Graphplan algorithm results in a valid plan: {app(A, 1), app(D, 4), rm(*, 5)} shown as the

dark lines in the planning graph in Fig. 12.

0 1     2

Len = 3

Len = 4

Len = 3

at A 1

app(D 4)

at * 4

app(*,4)

app(*,3)

app(*,2)

app(*,1)

at D 4

app(A,1)

at * 1

Fig. 9 Optimized forward planning graph with action nodes represented by solid-squares, proposition nodes
represented by dashed-squares, and horizontal lines between proposition nodes represent the maintenance
actions. Thin curved lines between actions (propositions) at a single level denote mutex relations. Some of
the no-ops and proposition nodes have not been specified for simplicity

4 (at A 1)

3 app (A, 1, ?len)

2 (len ≥ 4)

4 (at D 4)

3 app (D, 4, ?len)

2 (len ≥ 4)

2 (len = 4)Fig. 10 Regression-match graph
subset with initial conditions at
proposition-level 2
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5.6 Summary

We have presented an APS framework and used a comprehensive List ADT example to

describe how the operators can be developed for the specified planning domain. Our case

study, presented in Sect. 6, shows that the MEA-Graphplan algorithm can generate an

optimized planning graph and is computationally more efficient and can perform effective

solution extraction than the basic Graph Planning algorithm, especially for generating test

cases for complex systems such as process control distributed systems.

6 Case study

We have developed a case study to evaluate the proposed goal-oriented automated soft-

ware testing method.

6.1 System overview

The case study consists of a robot simulation system and the APS. The system operator can

control the ‘‘robot‘‘ via a car-like steering wheel and a pedal system. The operator can (a)

move the robot at varying speeds along a straight line (b) set the direction of motion to be

in the forward or backward direction, and (c) turn the robot around its center. The robot

must react to the operator’s actions in real-time.

6    (len = 4)

4  (len ≥ 5 )

5    rm(1,?len) rm(2,?len) rm(3,?len) rm(4,?len) rm(5,?len)

4(at D 4) 4(at A 1) 

Fig. 11 Regression-match graph subset with initial conditions at proposition-level 4
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Fig. 12 Optimized forward planning graph with some of the mutex relations and no-ops not shown for
simplicity. The valid plan shown as the dark lines in the planning graph
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The robot system simulates a consistent and controllable behavior for the real robot and

enables placement of sensors at various points to monitor the state of the system. Figure 13

shows our experimental environment in the case study, consisting of a User Interface

Device (UID) and the Simulator interface. The right hand side of Fig. 13 is the joystick, a

wheel and pedal, which can control the robot to move along a specified direction at a

specified speed. The left hand side is the robot simulator running on the client computer.

The simulator has two parts, namely, the status display and a default control interface.

The status display shows the area that the robot can turn or move through. The red circle

with a green line within it on the left-top portion of Fig. 13 represents the robot. The

direction of the line within the robot represents the direction of the robot’s motion (head

angle). The robot can be controlled directly by the UID, moving linearly or rotating around

its center. Hence, the robot in the simulator behaves exactly in the same way as the real

robot. The two black circles on the left-right portion denote the obstacles that the robot

should avoid hitting. The red spots in the display interface are waypoints that the robot

should move along with.

The interface in the left-bottom portion of Fig. 13 is the default control interface, which

is responsible for establishing a socket communication between the robot simulation

system and the control site (the computer where the UID/APS resides), and display the

speeds of the left and right wheels of the robot. The simulator supports many configuration

parameters, including setting of defaults, obstacles, and waypoints. These settings can be

combined together to achieve more complex system behaviors.

In order to automatically test the robot simulation system, the APS takes over the

control of the robot from the UID (joystick and pedal system). Just like the UID, the APS

resides on a different computer than the robot system. As shown in Fig. 14, APS and the

robot system communicate with each other through TCP/IP socket links. The robot system

sends software parameters (e.g., robot’s position, head direction, position of obstacles,

testing requirements, etc.) to the control module of APS.

The control module is responsible for communicating with the robot system, dis-

patching software parameters to the planning domain generator, receiving plans from the

AI planner, translating plans into commands for the robot, and monitoring the status of

robot.

The Planning Domain Generator then maps these software parameters (robot’s position,

waypoints information, obstacles information, testing requirements, etc.) to the planning

parameters {O, s0, g} (a set of operators, initial state, and goal state) that are passed as

inputs to the AI Planner.

Fig. 13 User interface device and simulator
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We have implemented the MEA-Graphplan as our AI Planner based on an open source

graphplan—JPlan (EL-Manzalawy, 2006). After obtaining the planning parameters {O, s0,

g}, the AI Planner is able to generate a valid plan which is a sequence of instantiated

actions ha1, a2, ..., an i from operators in O. The generated plan is then fed to the control

module.

6.2 MEA-Graphplan parameters

Essentially, we have three operators in this case study, namely, Turn, Goto, and Flash listed

in Table 1.

The robot’s location is identified by two parameters: the coordinate of its center and the

angle of its head direction. Given a point at coordinate ?t, the operator of ‘‘Turn’’ functions

to turn the robot around its center and adjust its head to point to ?t. The predicate of

‘‘align’’ is used to check if the robot’s head is already directed at the given point. If this is

the case, there is no need to execute the ‘‘Turn’’ operation; otherwise, the robot will adjust

its head direction to an angle calculated by the function of ‘‘calcAngle’’.

Software
parameters

Plan

Robot 
Simulation

System
Control Module 

Planning
Domain

Generator
AI Planner

Command 

Software
parameters

Planning 
parameters

Fig. 14 Test generation process model

Table 1 Operators of the robot

Operator Turn (Robot ?r, Angle ?a, Coordinate ?c, Coordinate ?t)

Constraint !align(?c, ?t, ?a)

Preconditions [At(?r, ?c) & heading(?r, ?a)]

Post-conditions [At(?r, ?c) & heading(?r, calcAngle(?c, ?t))]

Delete-Effect [heading(?r, ?a)]

Operator Goto (Robot ?r, Angle ?a, Coordinate ?from, Coordinate ?to)

Constraint align(?from, ?to, ?a)

Preconditions [At(?r, ?from) & heading(?r, ?a)]

Post-conditions [At(?r, ?to)]

Delete-Effect [At(?r, ?from)]

Operator Flash (Robot ?r, Coordinate ?c, Obstacle ?o, Coordinate ?t)

Constraint !Safe(?c, ?t)

Preconditions [At(?r, ?c) & At(?o,?t)]

Post-conditions [isFlashing(?r)]
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The operator ‘‘Goto’’ is specified as move the robot from its original coordinate ?from
to a given coordinate ?to provided that the robot’s head has already pointed to ?to. The

operator of flash happens when the robot hits an obstacle. The predicate ‘‘Safe’’ is used to

check if the robot’s current location is far enough from the given obstacle. If the robot is

within the unsafe region, the robot would start to flash, which serves as a warning sign.

Actually, the unsafe region around the obstacles is what we called ‘‘forbidden regions’’.

By specifying the goal states that are close to the forbidden region, our planning technique

can automate the testing process. Therefore, with the help of APS, we just need to decide

what to test, and let the planning system determine how to do it.

For example, initially, the robot is located at Coordinate (260, �360) with head angle of

0. The two obstacles are located at (850, �380) and (850, �580). The goal is to move the

robot to a location with Coordinate (855, �388) within the forbidden region and the robot

is flashing. With these initial and goal states, our AI planner produces a plan shown in

Fig. 15, which starts with turning the head of the robot to direct to the Coordinate (855,

�388), then moves from (260, �360) to (855, �388), and, finally, because it is now in the

forbidden region, the robot starts to flash.

Consider that the test engineer may want the robot to automatically follow a route to

reach the destination. The robot simulation system allows the tester to specify a sequence

of waypoints for the robot to move along with. If some accident occurs (e.g., hitting an

obstacle), the joystick will be used to control the robot manually to leave the forbidden

region.

We therefore extend our definitions of the operators in Table 1 to accommodate the

specification of waypoints. First, the Coordinate (x, y) is extended to three dimensions, i.e.,

(x, y, i), where x and y have the same meaning as the original coordinate, and i indicates the

index of the specified waypoint among all the waypoints. The definitions of operators for

waypoints are listed in Table 2.

Turn ( Rx, <0>, (260,-360), (855,-388) )
Goto ( Rx, <358>, (260,-360), (855,-388) )
Flash ( Rx, (855,-388), o1, (850, -380) ) 

Fig. 15 Generated plan

Table 2 Operators supporting waypoints

Operator Turn (Robot ?r, Angle ?a, Waypoint ?c, Waypoint ?t)

Constraint !align(?c, ?t, ?a) & sequent(?c,?t)

Preconditions [At(?r, ?c) & heading(?r, ?a)]

Post-conditions [At(?r, ?c) & heading(?r, calcAngle(?c, ?t))]

Delete-Effect [heading(?r, ?a)]

Operator Goto (Robot ?r, Angle ?a, Waypoint ?from, Waypoint ?to)

Constraint align(?from, ?to, ?a) & sequent(?from,?to)

Preconditions [At(?r, ?from) & heading(?r, ?a)]

Post-conditions [At(?r, ?to)]

Delete-Effect [At(?r, ?from)]
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When the number of waypoints is large, the state-space of graph expansion can grow

exponentially. Therefore, we use the predicate ‘‘sequent’’ to limit the search space to each

pair of successive waypoints. In other words, the robot can only turn to or go to the

succeeding waypoint.

Consider the following example to illustrate the waypoint testing process. Assume that

the tester has specified six waypoints. Parts of the planning parameters, which are auto-

matically generated by APS, are listed in Fig. 16.

The generated plan from our MEA-Graphplan AI Planner is: (Fig. 17)

In the current implementation, the testing request is initiated from the robot simulation

system. For example, after the test engineer completes setting the waypoints, there is a

menu in the interface for him or her to send the testing request along with other software

parameters (e.g., the waypoints settings, the robot’s location, head angle etc) to the control

module of the APS.

Another issue worthy of notice is that each step of the test case execution should be

monitored and verified. An incorrect state can lead to an unexpected result which makes

subsequent steps useless. Therefore, the APS should determine when to terminate the

testing process as soon as an exception is detected. In the current implementation, an

exception is detected when the socket connection is interrupted or the robot system is not

responsive for a certain period of time. The APS can keep track of the last successful

communication message from the robot system, the last successfully executed command,

and the command under execution. All these information are good clues for the system

developers to figure out what is going on with the robot simulation system under testing.

6.3 Empirical evaluation

We have implemented the MEA-Graphplan and compared its performance with the

Graphplan on our Robot domain. The performance of Graphplan is thoroughly evaluated in

Objects:  
Robot (Rx);
Angle (<20>);
Waypoint ((260,-360,0));
Waypoint ((426,-299,1));
Waypoint ((575,-213,2));
Waypoint ((759,-325,3));
Waypoint ((682,-446,4));
Waypoint ((472,-495,5));
Init: At (Rx,(260,-360,0)) & heading(Rx,<20>)
Goal: At (Rx,(472,-495,5))

Fig. 16 Example waypoint problem

Goto ( Rx, <20>, (260,-360,0), (426,-299,1) ) 
Turn ( Rx, <20>, (426,-299,1), (575,-213,2) ) 
Goto ( Rx, <29>, (426,-299,1), (575,-213,2) ) 
Turn ( Rx, <29>, (575,-213,2), (759,-325,3) ) 
Goto ( Rx, <329>, (575,-213,2), (759,-325,3) ) 
Turn ( Rx, <329>, (759,-325,3), (682,-446,4) ) 
Goto ( Rx, <237>, (759,-325,3), (682,-446,4) ) 
Turn ( Rx, <237>, (682,-446,4), (472,-495,5) ) 
Goto ( Rx, <193>, (682,-446,4), (472,-495,5) ) 

Fig. 17 Generated plan for the waypoint problem
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Blum and Furst (1997), which shows that, in some cases, it is orders of magnitude faster

than other planning techniques. So the good performance of MEA-Graphplan in the fol-

lowing two sets of experimental comparisons with Graphplan further justifies its appli-

cability as the AI Planner for our automated testing method.

The first set of experiments tries to reveal the effect of irrelevant literals in the initial

state. Some prior works (EL-Manzalawy, 2006; Parker, 1999) that aim to improve the

original Graphplan have demonstrated that the algorithms applying the regression-

matching graph are not affected by the irrelevant initial literals. However, our empirical

evaluation shows that this is only true if no new objects irrelevant to the goal are intro-

duced to the planning problem.

Consider the waypoint problem in Fig. 16 as an example to show the effects of irrel-

evant initial literals. The initial state of the waypoint problem is that Robot Rx is located at

Waypoint (260, �360, 0) with head angle of 20. The objects in this problem include Robot

Rx, angle ‘‘20’’, and six waypoints.

We introduce a new object, Robot Ra, to the planning problem. We add to the initial

states a literal At (Ra, (260, �360, 0)) which is irrelevant to the goal state. From the curve

of MEA-Graphplan in Fig. 18 we can see that the corresponding time to produce a valid

plan increases a little as the number of irrelevant initials increases from 0 to 1.

The reason is that the instantiated irrelevant operators contribute to the performance

overhead. For example, the operator Turn(Robot ?r, Angle ?a, Waypoint ?c, Waypoint ?t)

can be instantiated to Turn(Robot Ra, h20 i, (260, �360, 0), (426, �299, 1)), Turn(Robot

Ra, h20 i, (426, �299, 1), (575, �213, 2)) ... During the construction of the regression-

matching graph in MEA-Graphplan, each of the instantiated actions will be chosen to

verify its applicability to the current proposition level. Because Robot Ra is irrelevant to

the goal At(Rx, (472, �495, 5)), these irrelevant instantiated operators would never be

added to the graph. Therefore, the MEA-Graphplan will not suffer from the state-space

explosion as Graphplan does. However, the process of verifying the applicability of the

Fig. 18 Effect of irrelevant
literals in initial state
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irrelevant instantiated operators does incur some overhead. That is why the total planning

execution time increases slightly.

To confirm our analysis, we add another irrelevant literal to the initial state, heading

(Ra,h20 i), with no new objects introduced. This time, the planning execution time remains

almost the same as the proceeding test. Then, we add the third irrelevant literal, heading

(Ra,h193 i), without new objects added too. The planning execution time once again

remains almost the same. We continue the experiment and repeat the same process by

adding new objects, Robot Rb and Rc, shown in Fig. 18 corresponding to the number of

irrelevant initials of 4 and 7 respectively. Then we observed that the same pattern repeats.

Meanwhile, the time of Graphplan to produce a valid plan grows substantially as the

number of irrelevant initial literals increases.

In the second set of experiments, we compared the performance of the two planners in

solving the waypoint problem by setting a set of varying number of waypoints. As shown

in Fig. 19, when the number of waypoints is less than 4, the two planners perform almost

the same. The graphplan performs even better than MEA-Graphplan because the cost of

constructing the regression-matching graph counteracts the benefit of MEA-Graphplan for

simple cases. However, as the number of waypoints increases, the performance of

Graphplan decreases rapidly relative to that of MEA-Graphplan. As a result, the curve of

its execution time grows much faster than that of MEA-Graphplan.

7 Related work

AI planning is attractive for software engineering processes because of its emphasis on

goals and the similarity of plans to programs. AI Planning has been used for various

applications within software engineering. In Fickas and Anderson (1988) and Anderson

(1993), the authors used planning as the underlying representation for software require-

ments and specifications. The AI Planner automates portions of the requirements

Fig. 19 Effect of number of
waypoints
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engineering processes including proposing functional specification, reviewing the speci-

fications, and modifying the specifications to meet customer needs. In Fickas and Helm

(1992), the authors used planning in designing composite systems. The AI planner gen-

erates example plans that violate problem constraints and simulates portions of the design

that helped in expediting design decision-making and evaluation. In Huff and Lesser

(1998) and Huff (1992), the authors exploited the structure of plans and their ability to

relate disparate goals in software engineering applications, including process engineering

and software adaptation. In Rist (1992), the author represented different levels of func-

tionality and goals in programs using a plan representation, which aided in program design

and re-use.

Starting from the early-90s, some interesting work has been done in the field of auto-

mated software testing using AI based approaches. In Deason, Brown, Chang, and Cross

(1991), the authors used rule based test generation method that encodes white box criteria

and information about control and data flow of the code. In Chilenski and Newcomb

(1994), the authors used a resolution-refutation theorem prover to determine structural test

coverage and coverage feasibility. In Zeil and Wild (1993, the authors used a knowledge

base of entities, their relationships, and their refinements for refinement of the test case

description. Anderson, Mayrhauser, and Mraz (1995) used neural networks as classifiers to

predict which test cases are likely to reveal faults.

In some of the most recent works on automated software testing, the focus has been on

using AI planning techniques because of its emphasis on goals and the similarity of plans

and test cases. In Howe, Mayrhauser and Mraz (1997), Scheetz, Mayrhauser, France,

Dahlman, and Howe (1999) and Mraz, Howe, Mayrhauser, and Li (1995), the authors use

the partial-order planner UCPOP for test case generation. The main reasons for using

UCPOP (Universal Conditional Partial Order Planner) are that it is relatively easy to use

and the domain representation is richer since it can represent goals that include universal

quantifiers and it does not order the operators in the plan until necessary. One major

shortcoming of partial-order planning over total-order planning is the linkability issue as

discussed in Veloso and (Blythe, 1994).

In Memon, Pollack, and Soffa (2001), the authors use Interference Progression Planner

(IPP) and HTN planning for test case generation. IPP (Anderson, Smith, & Weld, 1998;

Koehler, Nebel, & Hoffmann, 1997), a descendant of Graphplan, yields an extremely

speedy planner that in many cases is several orders of magnitude faster than the total-order

planner Prodigy (Veloso et al., 1995) and the partial-order planner UCPOP (Penberthy, &

Weld, 1992). HTN planning, also referred to as Hierarchical planning, is quite valuable for

GUI test case generation as GUIs typically have a large number of components and events,

and the use of hierarchy allows the GUI to be conceptually decomposed into different

levels of abstraction resulting in greater planning efficiency.

In Gupta, Bastani, Khan, and Yen (2004), we used Graphplan and its descendent MEA-

Graphplan to generate test data for software systems. We find Graphplan and its descen-

dents to be the most appropriate planning technique for testing complex systems since the

planning graph constructed during the planning process makes useful constraints (mutual
exclusion relation between action nodes and proposition nodes) explicitly available. It also

yields an extremely speedy planner. Also, the computationally efficient and effective

MEA-Graph planning greatly alleviates the problem of state-space explosion during the

graph expansion phase of the planning process. In Gupta et al. (2004), we also propose an

APS for applying any of the available AI planning techniques for software testing of an

ADT.
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8 Conclusion and future work

During automated software testing, AI planning techniques Graphplan and its descendents

MEA-Graph planning help us better understand the properties of the subsystems by

identifying possible interactions and conflicts between subsystems using its planning

graph. AI planning techniques generate a sequence of actions (e.g., plan or test data) that

guarantee that the system reaches its goal state thus allowing us to test the system in states

that are closer to forbidden regions. Further, our case study indicates that MEA-Graph

planning is potentially computationally more efficient and effective than basic Graph

Planning, especially for complex system testing.

We have presented a comprehensive List ADT example to show how MEA-Graphplan

can work for the specified planning domain. However, the proposed APS is not limited to

ADTs. Essentially, it can be applied to any state transition system, R = {S, A, T, C, f}, with

a finite set of states S, controllable actions A, and deterministic state-transition functions f.
To apply our proposed APS, the state transition system R and the mapping from

software parameters to planning parameters should be defined, and some domain specific

predicates and functions (e.g., the predicate ‘‘Align’’ and function ‘‘calcAngle’’ in our

case study) need to be incorporated into the APS. We have formulated a framework for

automated software testing, which can be applied to a specific domain by incorporating

domain-specific information (e.g., predicates and functions). We have also evaluated the

performance of the MEA-Graph planning technique in comparison with Graphplan plan-

ning technique using two comprehensive sets of examples in the robot domain, and the

empirical results show that the performance of MEA-Graphplan is relatively better.

One potential future research direction is to explore the application of some learning

techniques (Borrajo & Veloso, 1996; Minton et al., 1989; Veloso, 1994) in AI planning for

automated software testing. Learning in AI planning can basically be categorized into

learning in total-order planner (Avila et al., 2001; Veloso, 1994; Veloso et al., 1995) and

learning in partial-order planner (Estlin & Mooney, 1996; Muñoz-Avila, 1998; Muñoz-

Avila & Weberskirch, 1997). During unit testing of subsystems, we can train the AI

planner to generate plans for individual subsystems. This training can speed up the

planning process during system or integration testing and lead to more efficient and faster

planning for automated software testing.
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