
Extending Proxy Caching Capability: Issues
and Performance

Wei Hao & Jicheng Fu & Jiang He & I-Ling Yen &

Farokh Bastani & Ing-Ray Chen

Received: 31 March 2004 / Revised: 23 April 2005 /
Accepted: 8 November 2005 / Published online: 8 June 2006
Springer Science + Business Media, LLC 2006

Abstract Proxy caching is an effective approach to reduce the response latency to
client requests, web server load, and network traffic. Recently there has been a
major shift in the usage of the Web. Emerging web applications require increasing
amount of server-side processing. Current proxy protocols do not support caching
and execution of web processing units. In this paper, we present a weblet
environment, in which, processing units on web servers are implemented as weblets.
These weblets can migrate from web servers to proxy servers to perform required
computation and provide faster responses. Weblet engine is developed to provide
the execution environment on proxy servers as well as web servers to facilitate
uniform weblet execution. We have conducted thorough experimental studies to
investigate the performance of the weblet approach. We modify the industrial
standard e-commerce benchmark TPC-W to fit the weblet model and use its
workload model for performance comparisons. The experimental results show that
the weblet environment significantly improves system performance in terms of client
response latency, web server throughput, and workload. Our prototype weblet

World Wide Web (2006) 9: 253–275
DOI 10.1007/s11280-006-8556-0

W. Hao (*) : J. Fu : J. He : I.-L. Yen : F. Bastani
Department of Computer Science, University of Texas at Dallas, Dallas, TX, USA
e-mail: weihao@utdallas.edu

J. Fu
e-mail: jxf024000@utdallas.edu

J. He
e-mail: jianghe@utdallas.edu

I. Yen
e-mail: ilyen@utdallas.edu

F. Bastani
e-mail: bastani@utdallas.edu

I.-R. Chen
Department of Computer Science, Virginia Tech, Northern Virginia Graduate Center,
Alexandria, VA, USA

I.-L. Yen

e-mail: irchen@cs.vt.edu

system also demonstrates the feasibility of integrating weblet environment with
current web/proxy infrastructure.

Keywords e-commerce . proxy caching . service migration . web system

1. Introduction

Proxy caching has been extensively used to reduce the network traffic generated by
HTTP and to shorten the response latency. There have been extensive research
works in maximizing the benefits of web caching, including improving cache
management policies [5, 15] and using proxy arrays to provide collaborative caching
[4, 10, 24]. Improving proxy-caching techniques can potentially increase the cache
hit rate. However, due to the increasing appearance of non-cacheable web objects,
cache hit rate is limited no matter how good the caching scheme is. One major
category of non-cacheable objects are those generated dynamically by web
processing units, such as CGI scripts, Java Servlets, Active Server Pages, etc. Some
other data objects are made non-cacheable due to security requirements or statistics
collection purposes. In [11], it shows that accesses to web processing units constitute
15% of the web requests. Recently there has been a major shift in the usage of the
Web. Most of the e-commerce applications now require more web server
processing. A study on a large Web-based shopping system shows that 95% of the
client requests were for dynamic objects [3]. These client requests are forced to be
processed at web servers and can result in heavy server load, increased network
traffic, the lengthened response latency.

The server and network overloading problem can be eased by using replicated
servers. However, the locally distributed server architecture can reduce the load on
web servers, but not communication latency or network traffic. With a high access
rate, the link between the server cluster and the Internet can still become a
bottleneck.

Edge servers can be used to reduce the response latency and network traffic to a
certain degree. Recent study on web server offloading has a similar concept [13].
WebSphere Edge Server [23] is another edge server offloading example. These
approaches deploy part of the application logic on edge servers. However, the
improvement by edge servers can be limited. First, most of the edge server
approaches consider static offloading. For example, in WebSphere, servlets are
pre-allocated to edge servers in advance. Also, edge server offloading is a
heavyweight mechanism. Thus, these approaches cannot easily adapt to changing
client access patterns. Also, the level of replication in edge server approaches
is generally limited. Consider K independent web sites. In edge server approach,
N widely distributed web servers can be used for each web site to handle the
workload. But dedicating one platform to one web site may result in the waste of
resources. If KN independent servers are used to share the workload of all the K
web sites, then the same resources can be placed even closer to clients and provide
better load sharing, thus, yield much better performance improvement. The proxy
servers, that are playing crucial roles for caching static web pages at present, can
provide the natural infrastructure for implementing the independent servers
approach.

254 World Wide Web (2006) 9: 253–275

However, current web and proxy protocols do not support caching and execution
of web processing units. We need to extend proxy capability to support caching of a
wider variety of objects. Some dynamic object caching techniques can be used to
improve Web access performance. In [6], an approach for active cache has been
presented. Web server sends cache applets with web pages. Proxy server, when
delivering cached web pages, invokes the corresponding cached applet to perform
necessary processing. If the cache applet needs to access data objects or other
resources on the web server during its execution, it has to access remotely regardless
whether the remote accesses are cost-effective. Also it separates the concepts of web
pages from processing code, so it adds difficulties to web site administration. ESI
(Edge Side Include) [9] is an industrial standard proposed by Akamai with other
companies for fragment caching at edge servers. A simple markup language is used
to define the dynamic assembly of web contents at the edge of the Internet. Some
other research works [8, 17] have been proposed based on the fragment cache
concept but define different frameworks. Fragment cache can improve web system
performance and reduce network traffic due to the finer caching granularity and
dynamic page assembly. But fragment caches do not consider web processing
components, so traditional non-cacheable web objects are still non-cacheable on
proxy servers. In [18], an approach to cache dynamically generated HTML pages
has been proposed. Essentially, dynamic content is cached and delivered to the
clients that request for exactly the same dynamic content as in a previous request.
The advantage of this approach is its simplicity and easiness to use on web servers or
proxy servers. If the frequency of clients requesting for the same dynamic contents is
high, then this approach is effective. But in some web applications, the clients rarely
request the same dynamic contents. In these cases, this approach is not very helpful.

In [14], we introduce the concept of migratable processing unit, weblet. In the
weblet environment, processing units on web servers are implemented as weblets.
These weblets can migrate from web servers to proxy servers to perform required
computation. Web servers and proxy servers are extended to support the execution
of weblets. With the weblet approach, many web objects that were non-cacheable in
the conventional infrastructure will become cacheable. It builds on top of current
proxy infrastructure and can significantly increase the hit rate of proxy servers.

To validate the weblet approach, we conduct experimental study to analyze
weblet environment performance. We have implemented the weblet environment
and examined its performance impact on workloads generated using TPC-W
benchmark [22], which is an industrial standard benchmark for e-commerce
applications. The experimental study shows our proposed weblet environment can
achieve significant performance improvement in terms of response time, through-
put, and load. We have also implemented the prototype weblet system to dem-
onstrate the feasibility of integrating weblet environment with current web/proxy
server.

The rest of the paper is organized as follows. The design and implementation of
weblet environment is discussed in detail in Section 2. Our extensions to HTTP
protocol, Apache Web Server, and Squid proxy server are discussed. Weblet
Migration Manager is discussed in Section 3. Section 4 describes the TPC-W
benchmark and its implementation in the experiments. Section 5 discusses the
experimental study. We present experimental setup, methodology and result
analysis. We discuss further benefits of weblet environment in Section 6. Finally,
Section 7 summarizes the paper and outlines future research directions.

World Wide Web (2006) 9: 253–275 255

2. Weblet environment overview

We consider web server as a collection of web services, some deliver web pages to
clients and some provide special services other than web page accesses. Each
program unit implementing a web service is considered as a weblet. (Note that the
web services we discuss here is a general term, not the specific web services
discussed in [19], though weblet can definitely be used to improve the performance
of web service systems as well.) Existing proxy servers provide web page delivery
capability so that web pages cached locally at a proxy can be retrieved and sent to
the client in the same way as that at web servers. This can be viewed as one type of
weblets being implemented at both the web and the proxy servers. Since it is not
possible to extend the proxy servers to include all different types of web services, we
need to equip the proxy servers to provide a uniform execution environment so that
various weblets can be migrated and executed at proxy servers. We develop Weblet
Engine to provide such execution environment and use it on proxy servers as well as
web servers to facilitate uniform weblet execution. Basically, Weblet Engine
provides a uniform execution platform for weblets, which is very similar to an
agent platform that supports uniform execution of agents [1, 16].

In many cases, weblets need to carry data objects with them in order to perform
their functions. Consider an online shopping system, a weblet that displays the
merchandise catalog to customer needs to carry merchandise information from the
backend database. Thus, additional protocols are required to manage the data
migration and coordinate the migration effort with the weblet migration. Also,
analysis is required to determine whether migration of a data object is cost effective.
If a weblet, once migrated to a proxy server, needs to access many data objects on
the original web server, then it may be more cost effective not to migrate it. Based
on the locations of the data objects a weblet requires, we need to decide whether to
migrate the weblet. We design Weblet Migration Manager on the web server to
analyze the cost and make all migration decisions. The detailed decision making
process will be discussed later.

Security is another critical issue in the weblet environment. A malicious weblet may
try to compromise the proxy server or try to perform a DoS attack by consuming all the
resources of the proxy server. Thus, security mechanism should be incorporated in the
Weblet Engine to protect the resources on proxy servers. On the other hand, a
malicious proxy may compromise the privacy and integrity of the weblets. Also, one
weblet may exploit the security loopholes of the proxy server and compromise the
privacy and integrity of other weblets. As mentioned above, each weblet may carry
some data objects with it. These data may need to be shared with some weblets but
protected against the accesses by other weblets. Thus, sophisticated authentication and
access control protocols are needed for fine-grained security protection for proxy and
weblets_ resources. At the bottom layer of the Weblet Engine, we develop security
control components to realize a fine-grain security control mechanism. The security
issues are not discussed in this paper. Details can be found in [14].

On the implementation side, current Web infrastructure does not support proxy
caching of processing units (weblets). We need to modify web servers and proxy
servers to support the migration, caching, and execution of weblets and their data.
Also, HTTP protocol needs to be extended to support weblet requests. The
modifications to various components in the Web infrastructure to support the weblet
environment are discussed in the following subsections.

256 World Wide Web (2006) 9: 253–275

2.1. Protocol extension for weblet support

We expand HTTP protocol to support the processing of weblet objects. A new suffix
B.wlet’’ is used to differentiate weblets from the conventional requests. In HTTP 1.1
this new suffix is simply treated as a new entity header. When the proxy receives an
HTTP request, it checks whether the requested object is a weblet. If the object has
the B.wlet’’ suffix, then it is processed according to the weblet protocol.

We illustrate the weblet processing in Figure 1. Client A sends a request to its
proxy accessing http://www.abc.com/a.html. Since it is a conventional web request, it
is handled in the conventional way. Client B sends a request to its proxy accessing
http://www.abc.com/a.wlet, which is a weblet request. Upon receiving the request,
the proxy server passes it to the weblet engine. The weblet engine checks if the
requested weblet is cached locally. If not, then the request is forwarded to the web
server. The web server, upon receiving the weblet request, decides whether to
migrate the requested weblet. If not, then its weblet engine executes the weblet and
returns the results to the proxy. If the decision is in favor of migration, then the
requested weblet and associated data are sent to the proxy. Once the weblet is on
the proxy (either it was already cached or just newly migrated), the proxy weblet
engine executes the weblet and forwards the results to the client (Client B in this
case).

Weblet Engine consists of three components: Uniform Execution Platform,
Global Security Manager, and Local Security Manager. Uniform Execution
Platform provides the execution environment for weblets. Global security manager
interacts with Certification Authority (CA) servers and performs weblet authenti-
cation and authorization. Local security manager provides fine-grained access
control to weblets_ and local proxy resources and it provides privilege check before
perform resource access actions requested by the weblets. Certification Authority
server is used to authenticate various entities in the system. The certificate is used
for both authentication and privilege control. Location Manager is used to keep
track of weblet_s location.

Proxy Server B

Weblet Engine

Client A Client B

Conventional Web Request
http://www.abc.com/a.html

Weblet Request
http://www.abc.com/a.wlet

 Weblet Migration Message Weblet Certificate Message HTTP Request / Response

CA / Location Manager

Proxy Server A

Weblet Engine

Web Server

Weblet Engine

Figure 1 Weblet request processing.

World Wide Web (2006) 9: 253–275 257

http://www.abc.com/a.html
http://www.abc.com/a.wlet

2.2. Web server design and implementation

We designed the Web-Server Extension Module (shown in Figure 2) to enable web
servers to support the weblet environment. The extension system consists of a
Mod_Weblet module that lies in Apache web server, a Weblet Engine, and a
Weblet Migration Manager.

Mod_Weblet Module is used to intercept the weblet request and forward it to the
weblet engine. Weblet Migration Manager is used to decide whether a weblet and
its data objects should be migrated. All the modules, except for the Mod_Weblet
module, can be implemented externally to existing web server program; however,
Mod_Weblet should be integrated in the web server. We use Apache as our base
web server due to its popularity [2] and open source. The Mod_Weblet module is
added to Apache. It consists of the weblet request handler and the weblet engine
interface. Weblet request handler is responsible for receiving the weblet request
from the Apache core module, generating the HTML response message, and
sending it back to the Apache core module. Weblet engine interface component is
used to forward the weblet request to the associated weblet engine and wait for the
reply message. The other part of the Apache program stay intact.

2.3. Proxy server design and implementation

Similar to the case on web servers, we also developed a Proxy-Server Extension
Module to enable the proxy servers to support the weblet environment. The design
of Proxy-Server Extension Module is illustrated in Figure 3. The extension module
consists of a Weblet Request Interceptor that lies in Squid proxy server, a Weblet
Engine, and a Weblet Cache Manager.

We choose the Squid Proxy Server [20] as our proxy server since it is open source.
In order to make Squid proxy support weblet, we add a new module called Weblet
Request Interceptor. The architecture of Weblet Request Interceptor is the same as
Mod_Weblet. It consists of two components, the weblet request handler and the
weblet engine interface component. Weblet request handler is responsible for

Figure 2 Weblet extension module for web server.

258 World Wide Web (2006) 9: 253–275

intercepting weblet requests from the processing flow of existing Squid modules.
Weblet engine interface component is used to forward the weblet request to the
associated weblet engine and wait for the reply message.

Weblet Cache Manager provides weblet caching mechanism. We use the Greedy-
Dual-Size Popularity (GDSP) algorithm [15] as our weblet caching replacement
policy. For weblet caching consistency, we use a TTL-based cache validation
approach. Every cached weblet is assigned a TTL value. When a weblet with
expired TTL is accessed, the Weblet Cache Manager checks with the original web
server to validate the cached weblet. If there are no changes on the cached weblet,
its TTL is renewed. Otherwise, the latest copy of weblet migrates from the original
server to the proxy server. This mechanism is the same as TTL-based cache
validation protocol for HTML documents [12].

3. Weblet migration manager

3.1. Data migration

Migration decision-making is a critical issue in the weblet environment. Migrating a
weblet from a web server to a proxy server that is closer to the clients does not
always yield performance improvement. Weblets, during execution, may need to
access data from web servers. In an online shopping website, the browsing weblet
needs to access the catalog information. The required data objects can be migrated
to the proxy server with the browsing weblet. However, when the customer actually
places an order, the ordering weblet needs to determine the availability of the
desired merchandise. The quantity of a merchandise is a frequently updated data
and may not be suitable to be migrated to the proxy site. The need for accessing
data on the original web site results in communication overhead that could make
weblet migration undesirable. We classify data objects into three types to assist the

Figure 3 Weblet extension module for proxy server.

World Wide Web (2006) 9: 253–275 259

migration decision making. The three types of data objects and corresponding access
protocols are listed in the following.

Type 1: Many web applications involve data objects that are only read by the
client and updated infrequently (or never updated) by the web server. For example,
a data object storing the merchandise catalog in an online shopping system. This
type of data objects may be migrated. Each migrated data object is assigned a TTL
value by the web server. When a migrated data object is accessed by a weblet, the
TTL of the data object will be checked. If the TTL expires, then the proxy server
must validate the data object with the original web server.

Type 2: Some data objects are read and updated by clients, but are rarely
shared. For example, a data object storing the personalization information of a
client or a data object storing individual shopping cart information are of this
nature. This type of data objects may be migrated too. Once it is migrated with a
weblet, it can be cached at the proxy server with the weblet. We use a locking
mechanism to ensure the consistency of the data object. Let w denote the weblet
and d denote the data object that w needs to access. Also, assume that a copy of d,
namely, d_, is migrated with w. Whenever weblet w is activated at the proxy server
and w knows that it needs to access d_ during its computation, then w sends a
request to the original web server to validate d_ as well as to lock d. Locking d
ensures that no concurrent updates to d would occur. Since d is rarely shared, the
lock barely impacts the system performance. At the end of the execution, w sends all
its updates on d_ back to the web server to update and unlock d. When some other
proxies or clients attempt to access d while it is locked, we let the web server reclaim
its control over d. The proxy server sends the updates on d_ to the web server and
invalidates d_. All the remaining accesses to d by w will be directed to the web
server.

Type 3: The data objects that are highly shared and need frequent updates are
not suitable for migration.

Another factor to be considered for migration decisions is the structure of data.
For example, database contains not only a collection of data objects, but also their
semantic relations. Currently, we consider a table as a migration unit of databases.
For migration decision-making, we consider data types, table size, and table access
frequency. We can estimate the table access frequency from weblet logic and data
access log files. Tables with small sizes and high access frequency are more suit-
able for migration. We define migration values for tables to indicate the suit-
abilities for migration. It is defined as the table access frequency divided by the
table size. A table is migrated if its migration values is greater than or equal to a
threshold.

We design a database protocol to migrate tables while capturing both the data
objects in the table and the semantic relations among them. Figure 4 illustrates
the database table migration flow. First, the migration value (MV) for a table is
calculated. Then, the table is captured by an XML message. There are four elements
in the message, pre-population, population, post-population, and dataObject
elements. The pre-population, population, and dataObject elements are mandatory,

260 World Wide Web (2006) 9: 253–275

and the post-population element is optional. When a web server decides to migrate
a table, it first generates the SQL DDL (Data Definition Language) statements
for creating the table structure and stores them in the pre-population element. Then,
it generates the SQL DML (Data Manipulation Language) statements for
populating the table with migrated data and stores them in the population element.
Next, it generates the SQL DDL statements for adding index/constraints on the
table, if necessary, and stores them in the post-population element. Finally, the web
server exports the data from the table and stores the exported data in the
dataObject element. If the exported data is binary, then it is encoded in base64
format. Next, the XML message representing the table is sent from the web server
to the proxy server. When the proxy server receives a data migration message, it first
creates the table based on the pre-population information. Then, the proxy server
populates the table by using the population and dataObject elements. Finally, the
proxy server adds index/constraints on the table if necessary by using the post-
population element.

Using a table as a migration unit is somewhat coarse in granularity for large
tables. We will consider using a partial table, e.g., a group of records or a group of
fields, as a migration unit to improve the resource utilization. But this modification
is beyond the scope of this paper.

3.2. Weblet migration

The weblet migration manager is responsible for weblet migration decision-making
based on cost analysis. Some factors that should be considered for migration
decision-making include the communication cost between the server and client

Calculate MV for
a table

MV > threshold

Encode XML
message from DB

Send XML
message

Yes

No

Receive XML
message

Decode XML
message to DBExtract data

from DB

Populate data
to DB

Web Server Proxy Server

No migration

MV : Migration Value

Figure 4 Table migration flow diagram.

World Wide Web (2006) 9: 253–275 261

nodes, the dependency between a weblet and its required data objects, and the cost
for maintaining weblet/data consistency, etc. Based on the data/server location and
historical data access patterns, the cost incurred or benefits gained for a weblet to
execute at a proxy server can be estimated. The general rules for weblet migration
decision-making are as follows:

If a weblet does not need to access any data object, then it can be migrated
easily.

If the data objects required by a weblet belong to data type 1 or data type 2,
then we may migrate the weblet with its data objects.

If the data objects required by a weblet belong to data type 3, but the data
objects are accessed infrequently, then we may migrate the weblet and leave the
data objects on the web server.

If the data objects required by a weblet belong to data type 3, and the data
objects are accessed frequently, then the weblet won_t migrate.

If a weblet need perform operations on several data objects at the same time,
such as executing a query of joining multiple tables. If some data objects can be
migrated to a proxy server but the other data objects are not suitable for migration,
then the weblet won_t migrate.

4. TPC-W in weblet experimental study

4.1. TPC-W

TPC-W benchmark from the Transaction Processing Council is an industry-
standard transactional web benchmark that models an online bookstore. The
components of TPC-W can be logically divided into three parts: emulated browsers
(EB), web server, and database. The EBs simulate the activities of multiple
concurrent web browsing users, each making independently requests to a web
server for web pages. TPC-W defines 14 web interactions (pages), which support
user browsing, searching, customer registration, ordering, ordering inquiry, and
administrative activities. Most of the 14 web interactions need dynamic content
generation because they need to access information stored in the database. TPC-W
specifies that the database consists of a minimum of eight tables: ITEM,
CUSTOMER, ADDRESS, COUNTRY, ORDER, ORDER_LINE, CC_XACTS
(credit card transaction data), and AUTHOR tables. TPC-W workloads are
generated by EBs and the workload intensity can be controlled by number of
EBs. An EB always starts with a browsing session at the bookstore"s home page and
then continues traversing the bookstore_s web pages, following different links and
entering user information with different probabilities. There is a random period of
time spent sleeping between subsequent individual browser requests to simulate the
user_s think time. TPC-W specifies three different types of web interaction mixes by
varying the ratio of browse to buy: browsing, shopping, and web-based ordering.
Table 1 shows the web interaction frequencies for each type of interaction mix. The
primary performance metric tested by TPC-W is the number of Web Interactions
Processed per Second (WIPS), which measures the system throughput. Another
metric is the Web Interaction Response Time (WIRT), which measures the system
response latency.

262 World Wide Web (2006) 9: 253–275

4.2. TPC-W for weblet environment

We use the java-based TPC-W source code developed by University of Wisconsin at
Madison [7] as our basis. It is modified to fit our Weblet environment. This source
code includes three parts: client side programs which implement an emulated
browser, server side programs which implement TPC-W specified web logic by using
14 servlets, and a database population program which generates the database
structure and populates the database. On the server side, we convert the 14 servlets
to weblets, as indicated in the last column of Table 1. On the client side, the servlet
requests are substituted with weblet requests. EBs send requests to a proxy server
instead of directly to a web server, which is more accurate simulation of the current
web systems. Also, the original source code uses DB2 database. We substitute it by
MySQL database because MySQL is a popular open source database. Modifications
are made to compensate the differences in DB2 and MySQL. Bug correction and
performance improvement efforts are also made to the code. For example, we use a
connection pool to access the database. We populate databases on two web servers
with different sizes. The details of two populated databases are given in Table 2(a)
and (b). The large database is approximately 1.65 GB and the small database is ap-
proximately 1 GB. We use the web server 1 with a small database to represent a small
web site and use the web server 2 with a large database to represent a large web site.

4.3. Weblet and data migration

Based on the migration-decision rules for data objects and weblets discussed in
Section 3, we decide to migrate six weblets and two tables. The data in COUNTRY

Table 1 Web interaction mixes.

Web

interaction

Browsing

mix (%)

Shopping

mix (%)

Ordering

mix (%)

Weblet name

Browse 95 80 50

Home 29.00 16.00 9.12 TPCW_home_interaction.wlet

New products 11.00 5.00 0.46 TPCW_new_products_weblet.wlet

Best sellers 11.00 5.00 0.46 TPCW_best_sellers_weblet.wlet

Product detail 21.00 17.00 12.35 TPCW_product_detail_weblet.wlet

Search

request

12.00 20.00 14.53 TPCW_search_request_weblet.wlet

Search results 11.00 17.00 13.08 TPCW_execute_search.wlet

Order 5 20 50

Shopping cart 2.00 11.60 13.53 TPCW_shopping_cart_interaction.wlet

Customer

registration

0.82 3.00 12.86 TPCW_customer_registration_weblet.wlet

Buy request 0.75 2.60 12.73 TPCW_buy_request_weblet.wlet

Buy confirm 0.69 1.20 10.18 TPCW_buy_confirm_weblet.wlet

Order inquiry 0.30 0.75 0.25 TPCW_order_inquiry_weblet.wlet

Order display 0.25 0.66 0.22 TPCW_order_display_weblet.wlet

Admin

request

0.10 0.10 0.12 TPCW_admin_request_weblet.wlet

Admin

confirm

0.09 0.09 0.11 TPCW_admin_response_weblet.wlet

World Wide Web (2006) 9: 253–275 263

table are read-only and can be migrated easily, so they belong to data type 1. The
data in the ITEM and AUTHOR tables are read-only for clients and can be
modified by administrators using Admin Confirm weblet. According to TPC-W
specification, the probabilities for Admin Confirm weblet in three workload mixes
are 0.09, 0.09, and 0.11%. Essentially, the data in ITEM and AUTHOR tables are
seldom changed. Thus they also belong to data type 1. The data in remaining tables
are highly shared and need frequent updates, so they belong to data type 3 and are
not suitable for migration.

Though COUNTRY table is read-only, no weblets accessing this table are
suitable for migration. So we do not migrate the COUNTRY table. To determine
whether to migrate ITEM and AUTHOR tables, we consider their migration values.
According to TPC-W specification, the total access frequencies of Home, New
Products, Product Detail, Search Request, and Search Result weblets in three
workload mixes are approximately 84, 75, and 49%, respectively. Their access
frequencies are relatively high. Also, the sizes of ITEM and AUTHOR tables are
approximately 700 and 100 KB for the small web site, and 7,000 and 1,000 KB for
large web site, which are relatively small. So ITEM and AUTHOR tables can be
easily migrated.

New Products, Product Detail, Search Request, and Search Result weblets only
need to access ITEM and AUTHOR tables. Since ITEM and AUTHOR tables are
suitable for migration, it is cost effective to migrate these four weblets. In addition
to accessing ITEM and AUTHOR tables, Home weblet has a processing component
which queries the CUSTOMER table via a customer ID to obtain the customer_s
first and last names. However, this processing component is only invoked at the first
interaction of a user session requested by a return customer. If Home weblet
remotely accesses the CUSTOMER table, then it only incurs one communication
between the proxy and the web server. The communication cost can be further

Table name Number of rows

(a) Tables in web server 1

Customer 864,000

Address 1,728,000

Orders 777,600

Order_Line 2,332,800

CC_XACTS 777,600

Item 1,000

Author 250

Country 92

(b) Tables in web server 2

Customer 1,440,000

Address 2,880,000

Orders 1,296,000

Order_Line 3,888,000

CC_XACTS 1,296,000

Item 10,000

Author 2,500

Country 92

Table 2 Database tables
characteristics.

264 World Wide Web (2006) 9: 253–275

reduced by caching query responses on the proxy server. So, migrating Home weblet
is also cost-effective. Customer Registration weblet is used to provide a web page
for customer registration and does not need to access any data in the database. So, it
definitely can be migrated. The remaining weblets are not suitable for migration
since the data objects required by these weblets are highly shared and need frequent
updates.

At the beginning of each experiment, the proxy server only runs MySQL service
and has an empty database and there are no weblets in the cache. All weblet requests
will be forwarded to the web server, and the web server will check with Weblet
Migration Manager to decide if the requested weblet should migrate. In our
experimental study, all the weblets are predefined as migratable and non-migratable
in the Weblet Migration Manager according to the analysis discussed above. So, when
the web server gets requests accessing the six migratable weblets, it will migrate the
weblets and the associated tables to the proxy server. The migration of data objects
uses the data migration XML message discussed in Section 3. When a migrated
weblet and its data objects come to the proxy server, the Weblet Cache Manager
first caches the weblet, then creates and populates tables, and finally executes the
migrated weblet. Proxy server returns the response back to the requesting client.
Each migrated weblet and its carried data objects have TTL values assigned by the
web server. The TTL values of weblet and its data objects may be different.

5. Experimental study

The goal of our experimental study is to compare the performance of weblet system
with current Web system and dynamic content caching approach. We discuss the
three cases in the following.

Current Web System: This is to simulate the conventional web systems. Clients
send weblet requests to the proxy server, and the proxy server simply forwards the
client requests to the web server and forwards the responses back to the corresponding
clients. There is no weblet migration from the web server to the proxy server.

Dynamic Content Caching: Based on the design idea of [18], we implement the
servlets with dynamic content caching on the Web server (Tomcat Server). The
TPC-W specified web interactions are implemented as 14 servlets. Among them
Home, New Products, Best Sellers, Product Detail, Search Request, Search Results,
and Customer Registration are cacheable servlet requests. The rest are non-
cacheable servlet requests. In this case, there is no proxy between clients and the
web server. Clients directly send servlet requests to the Web server. Web server first
checks if there are cached responses to the previous requests for the same content. If
yes, then the requests are served from the cache. If not, the requests are served by
corresponding servlets. TTL value of 5 min is assigned to each cached response. If
the TTL values of cached responses expire, the requests are served by the
corresponding servlets instead of returning the cached responses. In order to
maximize the gain of this case, we use unlimited cache size.

Weblet case: In this case, clients send weblet requests to the proxy server and the
proxy server first checks if the weblet is cached in the Weblet Cache Manager. If yes

World Wide Web (2006) 9: 253–275 265

and the cached weblet is valid, the request will be served on the local weblet engine.
When the cached weblet needs to access its cached data objects, it checks the TTL
values of the data objects. If the TTL value of a data object expires, then the weblet
checks its validity with the web server. Otherwise, the data object is used directly.

In the following subsections, we discuss the experimental setup and performance
results.

5.1. Experimental setup

The general Web infrastructure consists of a number of clients, proxy servers, and
web servers. Clients generally have fixed proxy servers. Since the proxy servers
usually work independently of each other, we consider a single proxy server in our
experimental setups. We design two experimental setups to study the weblet system
performance. In Experiment 1, we consider a single web server and one proxy
server. The web server is configured as web server 1 with the small database as
discussed in Section 4.2. Since a proxy server may cache web requests for multiple
web sites, we design Experiment 2 to study the performance impact on weblet
system when the proxy caches weblets from two different web servers. Thus, the
setup for Experiment 2 includes two web servers and one proxy server.

To measure the real impact of communication cost over the Internet, we setup
the web servers at Virginia Tech Campus and the proxy server and client machines
at UTD (University of Texas at Dallas) Campus. The web server platforms are
Pentium IV 1.6 GHz single CPU notebooks with 256 MB RAM and 30 GB disk.
The two web servers are set up as two different online book shopping web sites. For
both experiments, the proxy server platform is a Pentium IV 2.2 GHz PC with 256
MB RAM and 40 GB disk. It runs Squid proxy server V2.5.stable4. Also, weblet
extension module and MySQL V.4.1.0-alpha are installed on the proxy server. For
weblet system and conventional web system, Apache V.2.0.44 web server with the
weblet extension module and MySQL V.4.1.0-alpha database server are installed on
the web server platform(s). For dynamic content caching mechanism, Tomcat Server
5.0.28 and MySQL V.4.1.0-alpha database server are installed on the web server.

In order to prevent the web server from becoming a bottleneck by the image
requests, we do not populate the item images on web server and disable the Brequest
images’’ parameter of EBs for all experiments. Disabling static image requests won_t
impact the result comparisons for dynamic web requests.

For all experiments, we use eight client machines to generate web traffic. Eight
Pentium III 800 MHz PCs with 256 MB RAM are used to simulate the clients. The
TPC-W Emulated Browser (EB) software is installed on the client machines. All of
machines run RedHat Linux 7.3. The client machines are connected to the proxy
server through a 100 Mbps Ethernet switch. The average round trip time among the
machines at UTD LAN is 0.35 ms. The average round trip time among the machines
at Virginia Tech LAN is 0.43 ms. The average round trip time between UTD
Campus and Virginia Tech Campus is 47 ms.

The client platforms emulate 50, 100, 150, 200, 250, 300, 350, 400, 450, and 500
simultaneous users and measure the system performance. To ensure that the clients
do not become a bottleneck, each client machine at most emulates 100 users. The
clients simulate the three different workload mixes defined in TPCW as discussed in
Section 4.1.

266 World Wide Web (2006) 9: 253–275

Each experiment is composed of three phases, warm-up phase, steady-state
phase, and cool-down phase, which are of time duration 120, 1,200 and 20 s,
respectively. During the warm-up phase, the migrations of weblets and their data
objects are performed based on predefined migration rules in Weblet Migration
Manager. In the steady-state phase, measurements are performed. System perfor-
mance is measured in term of client response latency, web server_s workload, and
throughput. We use CPU utilization information as server load metric. The web
servers use the sysstat utilities [21] to collect CPU utilization information from the
Linux kernel every 1 min. Clients collect the response time and throughput of
weblet requests. The TTL for migrated data objects is 5 min. We assume that
weblets will not be updated in the duration of interest.

5.2. Experiment 1 results

First, we consider Experiment 1 with browsing mix. Figure 5(a) shows the response
times in three cases. As we can see, Weblet case achieves the best response latency.
The response times in Weblet case and Dynamic Content Caching case are
significantly lower than that in Current Web System case. Also, the response time
increases drastically in Current Web System case after the number of clients exceeds
300, but increases smoothly in Weblet case and Dynamic Content Caching case. The
response times in Weblet case and Dynamic Content Caching case are 660 and
400% shorter than that in Current Web System case when the number of clients
reaches 500. In the Dynamic Content Caching case, all browsing Servlets are
cacheable requests. According to TPC-W specification, the percentage of browsing
requests is 95% in browsing mix. That means 95% requests might be served from
cache. For the requests that are served from cache, their response latencies are
significantly reduced because the responses come from memory and the database
accesses are avoided. The time that dynamic requests spend on database accesses is
a big part of the response latency. The number of cache hits increases as the number
of clients increases. So this case achieves a better response time, especially when
there are lots of clients. But this case has two disadvantages. First, each request has
to be served from Web server. The physical network latency always exists regardless
of cached responses or non-cached responses. Second, the responses are served from
cache only when the clients request for exactly the same content as that in a
previous cached request. This restricts the number of cache hits. In Weblet case, the
migrated weblets are directly served on proxy, which is very close to clients. So the
network latency is significantly reduced.

Figure 5(b) shows the CPU utilization in the three cases. The CPU utilization
in Dynamic Content Caching case is lower than that in Current Web System case
because the database accesses are avoided for cached responses and the database
operations takes lots of CPU cycles. Although Dynamic Content Caching case
can reduce the CPU utilization to some extent, all requests still need to be pro-
cessed on the web server. In Weblet case, caching weblet on proxy servers can
successfully offloads the web server load. So the CPU utilization in Weblet case is
lowest one.

Figure 5(c) shows the throughput (number of interactions per second) compar-
isons. In Current Web System case, the web server becomes saturated when it
reaches 350 clients. So it has the worst throughput. In the Dynamic Content Caching
case, cached responses reduce the database access bottleneck to some extent. So it

World Wide Web (2006) 9: 253–275 267

0

1000

2000

3000

4000

5000

50 100 150 200 250 300 350 400 450 500

Number of Clients

R
es

p
o

n
se

 T
im

e
(m

s)

Current Web System Dynamic Content Caching Weblet Case

(a) Response Time

0

20

40

60

80

100

50 100 150 200 250 300 350 400 450 500

Number of Clients

C
P

U
 U

ti
li

za
ti

o
n

 %

Current Web System Dynamic Content Caching Weblet Case

(b) CPU Utilization

0

10

20

30

40

50

60

70

50 100 150 200 250 300 350 400 450 500

Number of Clients

W
IP

S

Current Web System Dynamic Content Caching Weblet Case

(c) Web Interaction per Second

Figure 5 Browsing mix in Experiment 1.

268 World Wide Web (2006) 9: 253–275

achieves the better system throughput. In Weblet case, the web server is offloaded
significantly due to weblet migration. Thus, it achieves the best system throughput.

Next we consider shopping mix for Experiment 1. Figure 6 shows that the
response time, CPU utilization, and system throughput under the shopping mix.
Similar to browsing mix, caching weblet on proxy servers achieves the best results
on the response time, CPU utilization, and system throughput metrics. The results
of Dynamic Content Caching case are better than those in Current Web System
case. Comparing Figure 6 with Figure 5, we can see that in Current Web System
case, the response time of browsing mix is significantly higher than that of shopping
mixes after the number of clients exceeds 300. The reason is that the browsing mix
generates more Bselect’’ SQL queries than shopping mix, while the shopping mix
generates more Bupdate’’ SQL requests. The Bselect’’ requests usually take more
time and resources than Bupdate’’ requests. Thus database accesses become the
bottleneck of the system. Also, we can see that in Dynamic Content Caching case,
the improvement is less than that in browsing mix because the percentage of
cacheable requests is reduced.

Finally, we consider ordering mix for Experiment 1. Figure 7 shows that the
response time, CPU utilization, and system throughput for the ordering mix. Similar
to browsing and shopping mixes, caching weblet on proxy servers achieves the best
performance and the Dynamic Content Caching case has better results than those in
Current Web System case. Comparing Figures 5–7, we can observe that in Current
Web System case, the web server becomes saturated when it has 350, 450, and 500
clients for browsing, shopping, and ordering mixes, respectively, but the web server
in Weblet case remains stable. The different saturation points reflect the different
workload intensities imposed by different mixes. The browsing mix generates the
heaviest workload because it generates more Bselect’’ SQL queries than the other
mixes. We can also see that both Weblet and Dynamic Content Caching cases
achieve different system throughput improvement under three mixes. For both
cases, the system throughput under browsing mix has the most significant
improvement and the system throughput under ordering mix has the least
improvement. For Weblet case, the reason is that according to TPC-W specification,
the six migrated weblets in Weblet case can offload the web server load by 85, 78,
and 62% under browsing, shopping, and ordering mixes, respectively. The different
level of offloading results in different system throughput improvement. For
Dynamic Content Caching case, the percentages of cacheable requests are 95, 83,
and 63% under browsing, shopping, and ordering mixes, respectively. Different
percentages results in different system improvement.

5.3. Experiment 2

Now, we consider Experiment 2 and study the performance of the weblet system
with proxy caching weblets from two different web servers. Similar to Experiment 1,
three different workload mixes are considered but we only compare the Current
Web System and Weblet cases. We consider the performance measurement on one
web server at a time. First, we fix the load on web server 2 at 100 clients and
measure web server 1 behavior and response time. Then we reverse the setup and
measure the behavior of web server 2.

We measure the system performance under all three workload mixes and the
results are similar to that in Experiment 1. Essentially, caching weblet on proxy

World Wide Web (2006) 9: 253–275 269

0

500

1000

1500

2000

2500

3000

3500

4000

50 100 150 200 250 300 350 400 450 500

Number of Clients

R
es

p
o

n
se

 T
im

e
(m

s)

Current Web System Dynamic Content Caching Weblet Case

(a) Response Time

0

20

40

60

80

100

50 100 150 200 250 300 350 400 450 500

Number of Clients

C
P

U
 U

ti
li

za
ti

o
n

 %

Current Web System Dynamic Content Caching Weblet Case

(b) CPU Utilization

0

10

20

30

40

50

60

70

50 100 150 200 250 300 350 400 450 500

Number of Clients

W
IP

S

Current Web System Dynamic Content Caching Weblet Case

(c) Web Interaction per Second

Figure 6 Shopping mix in Experiment 1.

270 World Wide Web (2006) 9: 253–275

0

200

400

600

800

1000

1200

50 100 150 200 250 300 350 400 450 500

Number of Clients

R
es

p
o

n
se

 T
im

e
(m

s)

Current Web System Dynamic Content Caching Weblet Case

(a) Response Time

0

20

40

60

80

100

50 100 150 200 250 300 350 400 450 500

Number of Clients

C
P

U
 U

ti
li

za
ti

o
n

 %

Current Web System Dynamic Content Caching Weblet Case

(b) CPU Utilization

0

10

20

30

40

50

60

70

80

50 100 150 200 250 300 350 400 450 500

Number of Clients

W
IP

S

Current Web System Dynamic Content Caching Weblet Case

(c) Web Interaction per Second

Figure 7 Ordering mix in Experiment 1.

World Wide Web (2006) 9: 253–275 271

server can significantly reduce response time, offload the web server load, and
improve the system throughput for both web servers. Here we only present the
response time, CPU utilization, and system throughput of two web servers under
browsing mix, as shown in Figure 8. From this figure, we can observe that the
response time of web server 2 is significantly higher than that of web server 1. The

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

50 100 150 200 250 300 350 400 450 500

Number of Clients

R
es

p
o

n
se

 T
im

e
(m

s)

Current Web System for Web Site 1 Weblet Case for Web Site 1

Current Web System for Web Site 2 Weblet Case for Web Site 2

(a) Response Time

0

20

40

60

80

100

50 100 150 200 250 300 350 400 450 500

Number of Clients

C
P

U
 U

ti
li

za
ti

o
n

 %

Current Web System for Web Site 1 Weblet Case for Web Site 1

Current Web System for Web Site 2 Weblet Case for Web Site 2

(b) CPU Utilization

0

10

20

30

40

50

60

50 100 150 200 250 300 350 400 450 500

Number of Clients

W
IP

S

Current Web System for Web Site 1 Weblet Case for Web Site 1

Current Web System for Web Site 2 Weblet Case for Web Site 2

(c) Web Interaction per Second

Figure 8 Browsing mix in Experiment 2.

272 World Wide Web (2006) 9: 253–275

reason is that web server 2 has a bigger database than that of web server 1. The SQL
requests usually take more time and resources in a bigger database than in a smaller
database. Compare the response time and the system throughput of web server 1 in
Weblet case in Experiment 2 with that in Experiment 1, we can see that the
Experiment 2 yields worse performance. The response time in Experiment 2 is
significantly longer than that in Experiment 1 when the number of clients exceeds
300. The system throughput is significantly lower in Experiment 2 than that in
Experiment 1 when the number of clients exceeds 400. The reason of degraded
performance is obvious. In Experiment 2, the proxy server serves two different web
servers, and it caches and runs more weblets locally. The problem can be solved
easily by adding extra proxy servers to share the load.

6. Remarks

The weblet environment significantly improves system performance in terms of
client response latency, web server throughput, and workload. Also, it is very
flexible for weblet designers. The weblet designers can specify application specific
migration rules based on required data consistency level and system environment to
obtain the desired performance. Currently we only consider migrating read-only
data objects with the weblets. Actually, we are also developing full scale migration
decision policies to determine whether to migrate weblet and data objects at a fine
grained level considering various access patterns. For example, Shopping Cart
weblet can also be migrated to proxy servers even though the shopping cart is a
frequently updated data object. In real life, users usually go through a fixed proxy
server to issue shopping requests for an extended duration. Also, a user always reads
and updates his/her own shopping cart and his/her shopping cart is never updated by
other users. The Shopping Cart weblet can be migrated to a proxy server together
with its data objects. The proxy server can locally process shopping requests and
update the shopping cart. Updates can be sent back to the web server after an
extended time period. According to TPC-W, the percentages of shopping cart
interaction in three workload mixes are 2, 11.6, and 13.53%, respectively. Thus,
migration of Shopping Cart weblet can still result in performance gains. We can go
even further and migrate the ordering weblets to proxy servers. Ordering weblets
need access user personal information, such as name, address, credit card, etc. These
information can be migrated to the proxy server for ordering check. However,
security issues on these critical data should be considered. In [14], we discussed how
to protect weblet code and weblet carried data objects. A simpler approach is to use
one-way hash function to store the information. The proxy server only has hashed
values since only comparison is needed. Another issue to be considered for
migrating the ordering weblets is that it needs to verify the available quantities of
merchandises. Several approaches can be used for this step. First, the ordering
weblets can interact with back-end servers to perform the verification. Also, we can
let the ordering weblets estimate the remaining quantity based on historical selling
rate. The ordering weblets go back to the server only when the potential quantity is
low. Another way is to let the web servers partition the remaining quantity of
merchandise to let ordering weblet Bown’’ a number of merchandise and
periodically update their own quantities.

World Wide Web (2006) 9: 253–275 273

Weblet environment can be integrated not only with existing HTTP protocol, but
also many newly proposed frameworks. For example, fragment caching is an effective
technique to improve the web performance. This feature is supported by Microsoft
ASP.NET, IBM WebSphere Application Server, and other products. ESI implements
the fragment cache at edge servers. We can easily integrate the weblet environment
with ESI. In weblet environment, the web server decomposes a web page into
fragments. If the page only contains static fragments, then the assembly can be done
using usual fragment caching technique. If some fragments of the page involve
dynamic processing, then the processing logic can be implemented as weblets and the
weblets can be marked as dynamic fragments in the page template. The web server
not only provides templates to a proxy server but also migrates the corresponding
weblets to the proxy server. When a client issues a request, the proxy server
dynamically assemblies the response based on the corresponding template and page
fragments. If there are dynamic fragments in the template, then the corresponding
weblets are invoked before assembly. This combined approach can have the benefits
of fragment caching and weblet caching and yield better performance for web system.

7. Summary

We discuss an approach to enable the proxy servers to cache web processing
components such that conventionally noncachable objects can now be cached on
proxy servers to increase the cache hit rate. In our approach, we implement web
processing components as weblets that can migrate to client side proxies to provide
required services. When a client requests a certain service and the corresponding
weblet is cached at the proxy, it can be activated locally without going to the original
web server. To support this approach, we developed a weblet supporting
environment to facilitate robust and secure weblet migration and execution. We
have conducted experiments to study the performance of the weblet environment by
using the industrial standard e-commerce benchmark TPC-W. The experimental
results show that the weblet environment significantly improves system performance
in terms of client response latency, web server throughput, and workload. The
weblet environment also provides high security and considers both the protection of
proxy servers and the weblets. We have implemented a prototype weblet system
including the weblet environment and system modules discussed in this paper.

The weblet approach can yield a significant impact on the web system
infrastructure. With the current trend, we believe that more and more web ap-
plications will be computation oriented. With existing proxy protocol, cache hit rate
will drop due to these processing units. With the weblet approach, these processing
units can be migrated and cached and a higher proxy cache hit rate can be achieved.
Currently, the migration decision making module implemented on the web server is
still primitive. Research work needs to be conducted in several directions, including
the design of an integrated data migration and sharing protocol for weblets and the
development of cost-effective security algorithms for weblet code and data
protection.

In addition to supporting weblet execution, the weblet engine can also be used to
provide a uniform execution environment for many other applications. For example,
content adaptation became an important task recently due to the growing diversity

274 World Wide Web (2006) 9: 253–275

on end-user devices, such as PDA, mobile phone, and WebPad. Proxy servers are
the ideal platforms to perform content adaptation and information filtering for end
users. Various content adaptation and filtering programs can be implemented as
weblets and migrated to proxies to perform the desired task. Web service is another
application area that can make use of the weblet concept. Though currently not
considered, web service units can be implemented as weblets and migrated to proxy
servers to provide services close to the end users. We will investigate possible
extensions to Weblet Engine to allow proxy servers to form a widely distributed
infrastructure to support various applications.

References

1. Aglet: http://www.trl.ibm.co.jp/aglets
2. Apache Web Server: http://httpd.apache.org
3. Arlitt, M., Krishnamurthy, D., Rolia, J.: Characterizing the scalability of a large web-based

shopping system. ACM Transactions on Internet Technology 1(1), 44–69 (2001)
4. Cache Array Routing Protocol (CARP) and Microsoft Proxy Server 2.0: http://www.msdn.

microsoft.com/library/backgrnd/html/carp.html
5. Cao, P., Irani, S.: Cost-aware WWW proxy caching algorithms. In: Proceedings of the USENIX

Symp. on Internet Technologies and Systems, December, 193–206 (1997)
6. Cao, P., Zhang, J., Beach, K.: Active cache: caching dynamic contents on the web. In:

Proceedings of IFIP International Conference on Distributed Systems Platforms and Open
Distributed Processing (Middleware _98), 373–388 (1998)

7. Crain, H.W., Rajwar, R., Marden, M., Lipasti, M.H.: An architecture evaluation of Java TPC-W.
In: Proceedings of the Seventh IEEE Symposium on High-Performance Computer Architecture,
January, 229–240 (2001)

8. Datta, A., Dutta, K., Thomas, H., VanderMeer, D., Ramamritham, K.: Accelerating dynamic
web content generation. IEEE Internet Computing 6(5), 26–35 September (2002)

9. Edge Side Includes: http://www.esi.org
10. Fan, L., Cao, P., Almeida, J., Broder, A.Z.: Summary cache: a scalable wide-area web cache

sharing protocol. IEEE/ACM Trans. Netw. 8(3), 281–293 (2000)
11. Feldmannm, A., Caceres, R., Douglis, F., Rabinovich, M.: Performance of web proxy caching in

heterogeneous bandwidth environments. In: Proceedings of INFOCOM, 107–116 (1999)
12. Fielding, R., Gettys, J., Mogul, J.C., Frystyk, J., Masinter, H., Leach, L., Berners-Lee: RFC2616:

HyperText Transfer Protocol, HTTP/1.1- http://www.ietf.org/rfc/rfc2616.txt
13. Gao, L., Dahlin, M., Nayate, A., Zheng, J., Iyengar, A.: Application specific data replication for

edge services. WWW2003, May, 449–460 (2003)
14. Hao, W., Ma, Q.K., Yen, I.-L., Chen, I.: A Weblet environment to facilitate proxy caching of

web. In: Proceedings of Parallel & Distributed Computing and Systems, Marina del Rey,
California, November, 797–802 (2003)

15. Jin, S., Bestavros, A.: Popularity-aware greedy-dual-size web proxy caching algorithms. In:
Proceeding of the 20th Intl. Conf. on Distributed Computing Systems, April, 254–261 (2000)

16. Ma, Q.K., Hao, W., Li, W., Tu, M.H., Yen, I.-L: A mobile agent system to support secure
Internet and web applications. COMPSAC 2003 Workshop, Dallas, Texas, November, 2003

17. Mohapatra, P., Chen, H.: WebGraph: a framework for managing and improving performance of
dynamic web content. Special Issue of Proxy Servers in the IEEE J Sel Areas Commun 20(7),
September, 1414–1425 (2002)

18. Rajamani, K., Cox, A.: A simple and effective caching scheme for dynamic content. Tech.
Report TR 00-371, Computer Sc. Dept. at Rice Univ. (2000)

19. Roy, J., Ramanujan, A.: Understanding web services. IT Professional 3(6), 69–73, November
(2001)

20. Squid Proxy Server: http://www.squid-cache.org/
21. Sysstat: http://freshmeat.net/projects/sysstat/
22. TPC-W: http://www.tpc.org/tpcw/
23. WebSphere Edge Server: http://www-306.ibm.com/software/webservers/edgeserver/
24. Wessels, D., Claffy, K.: ICP and the Squid web cache. IEEE J. Sel. Areas Commun. 16(3), 345–357,

April (1998)

World Wide Web (2006) 9: 253–275 275

http://www.trl.ibm.co.jp/aglets
http://httpd.apache.org
http://www.msdn.microsoft.com/library/backgrnd/html/carp.html
http://www.msdn.microsoft.com/library/backgrnd/html/carp.html
http://www.esi.org
http://www.ietf.org/rfc/rfc2616.txt
http://www.squid-cache.org/
http://freshmeat.net/projects/sysstat/
http://www.tpc.org/tpcw/
http://www-306.ibm.com/software/webservers/edgeserver/

	Extending Proxy Caching Capability: Issues and Performance
	Abstract
	Keywords
	Introduction
	Weblet environment overview
	Protocol extension for weblet support
	Web server design and implementation
	Proxy server design and implementation

	Weblet migration manager
	Data migration
	Weblet migration

	TPC-W in weblet experimental study
	TPC-W
	TPC-W for weblet environment
	Weblet and data migration

	Experimental study
	Experimental setup
	Experiment 1 results
	Experiment 2

	Remarks
	Summary
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AardvarkPSMT
 /AceBinghamSH
 /AddisonLibbySH
 /AGaramond-Italic
 /AGaramond-Regular
 /AkbarPlain
 /Albertus-Bold
 /AlbertusExtraBold-Regular
 /AlbertusMedium-Italic
 /AlbertusMedium-Regular
 /AlfonsoWhiteheadSH
 /Algerian
 /AllegroBT-Regular
 /AmarilloUSAF
 /AmazoneBT-Regular
 /AmeliaBT-Regular
 /AmerigoBT-BoldA
 /AmerTypewriterITCbyBT-Medium
 /AndaleMono
 /AndyMacarthurSH
 /Animals
 /AnneBoleynSH
 /Annifont
 /AntiqueOlive-Bold
 /AntiqueOliveCompact-Regular
 /AntiqueOlive-Italic
 /AntiqueOlive-Regular
 /AntonioMountbattenSH
 /ArabiaPSMT
 /AradLevelVI
 /ArchitecturePlain
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMTBlack-Regular
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeLight
 /ArialUnicodeLight-Bold
 /ArialUnicodeLight-BoldItalic
 /ArialUnicodeLight-Italic
 /ArrowsAPlentySH
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /Asiana
 /AssadSadatSH
 /AvalonPSMT
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /AvantGardeITCbyBT-Demi
 /AvantGardeITCbyBT-DemiOblique
 /AvantGardeITCbyBT-Medium
 /AvantGardeITCbyBT-MediumOblique
 /BankGothicBT-Light
 /BankGothicBT-Medium
 /Baskerville-Bold
 /Baskerville-Normal
 /Baskerville-Normal-Italic
 /BaskOldFace
 /Bauhaus93
 /Bavand
 /BazookaRegular
 /BeauTerrySH
 /BECROSS
 /BedrockPlain
 /BeeskneesITC
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BenguiatITCbyBT-Bold
 /BenguiatITCbyBT-BoldItalic
 /BenguiatITCbyBT-Book
 /BenguiatITCbyBT-BookItalic
 /BennieGoetheSH
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardBoldCondensedBT-Regular
 /BernhardFashionBT-Regular
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /Bethel
 /BibiGodivaSH
 /BibiNehruSH
 /BKenwood-Regular
 /BlackadderITC-Regular
 /BlondieBurtonSH
 /BodoniBlack-Regular
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /BodoniBT-Bold
 /BodoniBT-BoldItalic
 /BodoniBT-Italic
 /BodoniBT-Roman
 /Bodoni-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Regular
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolFive
 /BookshelfSymbolFour
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /BookwomanDemiItalicSH
 /BookwomanDemiSH
 /BookwomanExptLightSH
 /BookwomanLightItalicSH
 /BookwomanLightSH
 /BookwomanMonoLightSH
 /BookwomanSwashDemiSH
 /BookwomanSwashLightSH
 /BoulderRegular
 /BradleyHandITC
 /Braggadocio
 /BrailleSH
 /BRectangular
 /BremenBT-Bold
 /BritannicBold
 /Broadview
 /Broadway
 /BroadwayBT-Regular
 /BRubber
 /Brush445BT-Regular
 /BrushScriptMT
 /BSorbonna
 /BStranger
 /BTriumph
 /BuckyMerlinSH
 /BusoramaITCbyBT-Medium
 /Caesar
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-Italic
 /CalligrapherRegular
 /CameronStendahlSH
 /Candy
 /CandyCaneUnregistered
 /CankerSore
 /CarlTellerSH
 /CarrieCattSH
 /CaslonOpenfaceBT-Regular
 /CassTaylorSH
 /CDOT
 /Centaur
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturyOldStyle-BoldItalic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Cezanne
 /CGOmega-Bold
 /CGOmega-BoldItalic
 /CGOmega-Italic
 /CGOmega-Regular
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /Charting
 /ChartreuseParsonsSH
 /ChaseCallasSH
 /ChasThirdSH
 /ChaucerRegular
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /ChildBonaparteSH
 /Chiller-Regular
 /ChuckWarrenChiselSH
 /ChuckWarrenDesignSH
 /CityBlueprint
 /Clarendon-Bold
 /Clarendon-Book
 /ClarendonCondensedBold
 /ClarendonCondensed-Bold
 /ClarendonExtended-Bold
 /ClassicalGaramondBT-Bold
 /ClassicalGaramondBT-BoldItalic
 /ClassicalGaramondBT-Italic
 /ClassicalGaramondBT-Roman
 /ClaudeCaesarSH
 /CLI
 /Clocks
 /ClosetoMe
 /CluKennedySH
 /CMBX10
 /CMBX5
 /CMBX7
 /CMEX10
 /CMMI10
 /CMMI5
 /CMMI7
 /CMMIB10
 /CMR10
 /CMR5
 /CMR7
 /CMSL10
 /CMSY10
 /CMSY5
 /CMSY7
 /CMTI10
 /CMTT10
 /CoffeeCamusInitialsSH
 /ColetteColeridgeSH
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CommercialPiBT-Regular
 /CommercialScriptBT-Regular
 /Complex
 /CooperBlack
 /CooperBT-BlackHeadline
 /CooperBT-BlackItalic
 /CooperBT-Bold
 /CooperBT-BoldItalic
 /CooperBT-Medium
 /CooperBT-MediumItalic
 /CooperPlanck2LightSH
 /CooperPlanck4SH
 /CooperPlanck6BoldSH
 /CopperplateGothicBT-Bold
 /CopperplateGothicBT-Roman
 /CopperplateGothicBT-RomanCond
 /CopticLS
 /Cornerstone
 /Coronet
 /CoronetItalic
 /Cotillion
 /CountryBlueprint
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CSSubscript
 /CSSubscriptBold
 /CSSubscriptItalic
 /CSSuperscript
 /CSSuperscriptBold
 /Cuckoo
 /CurlzMT
 /CybilListzSH
 /CzarBold
 /CzarBoldItalic
 /CzarItalic
 /CzarNormal
 /DauphinPlain
 /DawnCastleBold
 /DawnCastlePlain
 /Dekker
 /DellaRobbiaBT-Bold
 /DellaRobbiaBT-Roman
 /Denmark
 /Desdemona
 /Diploma
 /DizzyDomingoSH
 /DizzyFeiningerSH
 /DocTermanBoldSH
 /DodgenburnA
 /DodoCasalsSH
 /DodoDiogenesSH
 /DomCasualBT-Regular
 /Durian-Republik
 /Dutch801BT-Bold
 /Dutch801BT-BoldItalic
 /Dutch801BT-ExtraBold
 /Dutch801BT-Italic
 /Dutch801BT-Roman
 /EBT's-cmbx10
 /EBT's-cmex10
 /EBT's-cmmi10
 /EBT's-cmmi5
 /EBT's-cmmi7
 /EBT's-cmr10
 /EBT's-cmr5
 /EBT's-cmr7
 /EBT's-cmsy10
 /EBT's-cmsy5
 /EBT's-cmsy7
 /EdithDaySH
 /Elephant-Italic
 /Elephant-Regular
 /EmGravesSH
 /EngelEinsteinSH
 /English111VivaceBT-Regular
 /English157BT-Regular
 /EngraversGothicBT-Regular
 /EngraversOldEnglishBT-Bold
 /EngraversOldEnglishBT-Regular
 /EngraversRomanBT-Bold
 /EngraversRomanBT-Regular
 /EnviroD
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErasITC-Ultra
 /ErnestBlochSH
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EuroRoman
 /EuroRomanOblique
 /ExxPresleySH
 /FencesPlain
 /Fences-Regular
 /FifthAvenue
 /FigurineCrrCB
 /FigurineCrrCBBold
 /FigurineCrrCBBoldItalic
 /FigurineCrrCBItalic
 /FigurineTmsCB
 /FigurineTmsCBBold
 /FigurineTmsCBBoldItalic
 /FigurineTmsCBItalic
 /FillmoreRegular
 /Fitzgerald
 /Flareserif821BT-Roman
 /FleurFordSH
 /Fontdinerdotcom
 /FontdinerdotcomSparkly
 /FootlightMTLight
 /ForefrontBookObliqueSH
 /ForefrontBookSH
 /ForefrontDemiObliqueSH
 /ForefrontDemiSH
 /Fortress
 /FractionsAPlentySH
 /FrakturPlain
 /Franciscan
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /FranklinUnic
 /FredFlahertySH
 /Freehand575BT-RegularB
 /Freehand591BT-RegularA
 /FreestyleScript-Regular
 /Frutiger-Roman
 /FTPMultinational
 /FTPMultinational-Bold
 /FujiyamaPSMT
 /FuturaBlackBT-Regular
 /FuturaBT-Bold
 /FuturaBT-BoldCondensed
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-ExtraBlack
 /FuturaBT-ExtraBlackCondensed
 /FuturaBT-ExtraBlackCondItalic
 /FuturaBT-ExtraBlackItalic
 /FuturaBT-Light
 /FuturaBT-LightItalic
 /FuturaBT-Medium
 /FuturaBT-MediumCondensed
 /FuturaBT-MediumItalic
 /GabbyGauguinSH
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Antiqua
 /Garamond-Bold
 /Garamond-Halbfett
 /Garamond-Italic
 /Garamond-Kursiv
 /Garamond-KursivHalbfett
 /Garcia
 /GarryMondrian3LightItalicSH
 /GarryMondrian3LightSH
 /GarryMondrian4BookItalicSH
 /GarryMondrian4BookSH
 /GarryMondrian5SBldItalicSH
 /GarryMondrian5SBldSH
 /GarryMondrian6BoldItalicSH
 /GarryMondrian6BoldSH
 /GarryMondrian7ExtraBoldSH
 /GarryMondrian8UltraSH
 /GarryMondrianCond3LightSH
 /GarryMondrianCond4BookSH
 /GarryMondrianCond5SBldSH
 /GarryMondrianCond6BoldSH
 /GarryMondrianCond7ExtraBoldSH
 /GarryMondrianCond8UltraSH
 /GarryMondrianExpt3LightSH
 /GarryMondrianExpt4BookSH
 /GarryMondrianExpt5SBldSH
 /GarryMondrianExpt6BoldSH
 /GarryMondrianSwashSH
 /Gaslight
 /GatineauPSMT
 /Gautami
 /GDT
 /Geometric231BT-BoldC
 /Geometric231BT-LightC
 /Geometric231BT-RomanC
 /GeometricSlab703BT-Bold
 /GeometricSlab703BT-BoldCond
 /GeometricSlab703BT-BoldItalic
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /GeometricSlab703BT-Medium
 /GeometricSlab703BT-MediumCond
 /GeometricSlab703BT-MediumItalic
 /GeometricSlab703BT-XtraBold
 /GeorgeMelvilleSH
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansBC
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSansCondensed-Bold
 /GillSansCondensed-Regular
 /GillSansExtraBold-Regular
 /GillSans-Italic
 /GillSansLight-Italic
 /GillSansLight-Regular
 /GillSans-Regular
 /GoldMinePlain
 /Gonzo
 /GothicE
 /GothicG
 /GothicI
 /GoudyHandtooledBT-Regular
 /GoudyOldStyle-Bold
 /GoudyOldStyle-BoldItalic
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleExtrabold-Regular
 /GoudyOldStyle-Italic
 /GoudyOldStyle-Regular
 /GoudySansITCbyBT-Bold
 /GoudySansITCbyBT-BoldItalic
 /GoudySansITCbyBT-Medium
 /GoudySansITCbyBT-MediumItalic
 /GraceAdonisSH
 /Graeca
 /Graeca-Bold
 /Graeca-BoldItalic
 /Graeca-Italic
 /Graphos-Bold
 /Graphos-BoldItalic
 /Graphos-Italic
 /Graphos-Regular
 /GreekC
 /GreekS
 /GreekSans
 /GreekSans-Bold
 /GreekSans-BoldOblique
 /GreekSans-Oblique
 /Griffin
 /GrungeUpdate
 /Haettenschweiler
 /HankKhrushchevSH
 /HarlowSolid
 /HarpoonPlain
 /Harrington
 /HeatherRegular
 /Hebraica
 /HeleneHissBlackSH
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HenryPatrickSH
 /Herald
 /HighTowerText-Italic
 /HighTowerText-Reg
 /HogBold-HMK
 /HogBook-HMK
 /HomePlanning
 /HomePlanning2
 /HomewardBoundPSMT
 /Humanist521BT-Bold
 /Humanist521BT-BoldCondensed
 /Humanist521BT-BoldItalic
 /Humanist521BT-Italic
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-Roman
 /Humanist521BT-RomanCondensed
 /IBMPCDOS
 /IceAgeD
 /Impact
 /Incised901BT-Bold
 /Incised901BT-Light
 /Incised901BT-Roman
 /Industrial736BT-Italic
 /Informal011BT-Roman
 /InformalRoman-Regular
 /Intrepid
 /IntrepidBold
 /IntrepidOblique
 /Invitation
 /IPAExtras
 /IPAExtras-Bold
 /IPAHighLow
 /IPAHighLow-Bold
 /IPAKiel
 /IPAKiel-Bold
 /IPAKielSeven
 /IPAKielSeven-Bold
 /IPAsans
 /ISOCP
 /ISOCP2
 /ISOCP3
 /ISOCT
 /ISOCT2
 /ISOCT3
 /Italic
 /ItalicC
 /ItalicT
 /JesterRegular
 /Jokerman-Regular
 /JotMedium-HMK
 /JuiceITC-Regular
 /JupiterPSMT
 /KabelITCbyBT-Book
 /KabelITCbyBT-Ultra
 /KarlaJohnson5CursiveSH
 /KarlaJohnson5RegularSH
 /KarlaJohnson6BoldCursiveSH
 /KarlaJohnson6BoldSH
 /KarlaJohnson7ExtraBoldCursiveSH
 /KarlaJohnson7ExtraBoldSH
 /KarlKhayyamSH
 /Karnack
 /Kartika
 /Kashmir
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KeplerStd-Black
 /KeplerStd-BlackIt
 /KeplerStd-Bold
 /KeplerStd-BoldIt
 /KeplerStd-Italic
 /KeplerStd-Light
 /KeplerStd-LightIt
 /KeplerStd-Medium
 /KeplerStd-MediumIt
 /KeplerStd-Regular
 /KeplerStd-Semibold
 /KeplerStd-SemiboldIt
 /KeystrokeNormal
 /Kidnap
 /KidsPlain
 /Kindergarten
 /KinoMT
 /KissMeKissMeKissMe
 /KoalaPSMT
 /KorinnaITCbyBT-Bold
 /KorinnaITCbyBT-KursivBold
 /KorinnaITCbyBT-KursivRegular
 /KorinnaITCbyBT-Regular
 /KristenITC-Regular
 /Kristin
 /KunstlerScript
 /KyotoSong
 /LainieDaySH
 /LandscapePlanning
 /Lapidary333BT-Bold
 /Lapidary333BT-BoldItalic
 /Lapidary333BT-Italic
 /Lapidary333BT-Roman
 /Latha
 /LatinoPal3LightItalicSH
 /LatinoPal3LightSH
 /LatinoPal4ItalicSH
 /LatinoPal4RomanSH
 /LatinoPal5DemiItalicSH
 /LatinoPal5DemiSH
 /LatinoPal6BoldItalicSH
 /LatinoPal6BoldSH
 /LatinoPal7ExtraBoldSH
 /LatinoPal8BlackSH
 /LatinoPalCond4RomanSH
 /LatinoPalCond5DemiSH
 /LatinoPalCond6BoldSH
 /LatinoPalExptRomanSH
 /LatinoPalSwashSH
 /LatinWidD
 /LatinWide
 /LeeToscanini3LightSH
 /LeeToscanini5RegularSH
 /LeeToscanini7BoldSH
 /LeeToscanini9BlackSH
 /LeeToscaniniInlineSH
 /LetterGothic12PitchBT-Bold
 /LetterGothic12PitchBT-BoldItal
 /LetterGothic12PitchBT-Italic
 /LetterGothic12PitchBT-Roman
 /LetterGothic-Bold
 /LetterGothic-BoldItalic
 /LetterGothic-Italic
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Regular
 /LibrarianRegular
 /LinusPSMT
 /Lithograph-Bold
 /LithographLight
 /LongIsland
 /LubalinGraphMdITCTT
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /LydianCursiveBT-Regular
 /Magneto-Bold
 /Mangal-Regular
 /Map-Symbols
 /MarcusHobbesSH
 /Mariah
 /Marigold
 /MaritaMedium-HMK
 /MaritaScript-HMK
 /Market
 /MartinMaxxieSH
 /MathTypeMed
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /MaudeMeadSH
 /MemorandumPSMT
 /Metro
 /Metrostyle-Bold
 /MetrostyleExtended-Bold
 /MetrostyleExtended-Regular
 /Metrostyle-Regular
 /MicrogrammaD-BoldExte
 /MicrosoftSansSerif
 /MikePicassoSH
 /MiniPicsLilEdibles
 /MiniPicsLilFolks
 /MiniPicsLilStuff
 /MischstabPopanz
 /MisterEarlBT-Regular
 /Mistral
 /ModerneDemi
 /ModerneDemiOblique
 /ModerneOblique
 /ModerneRegular
 /Modern-Regular
 /MonaLisaRecutITC-Normal
 /Monospace821BT-Bold
 /Monospace821BT-BoldItalic
 /Monospace821BT-Italic
 /Monospace821BT-Roman
 /Monotxt
 /MonotypeCorsiva
 /MonotypeSorts
 /MorrisonMedium
 /MorseCode
 /MotorPSMT
 /MSAM10
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MSReference1
 /MSReference2
 /MTEX
 /MTEXB
 /MTEXH
 /MT-Extra
 /MTGU
 /MTGUB
 /MTLS
 /MTLSB
 /MTMI
 /MTMIB
 /MTMIH
 /MTMS
 /MTMSB
 /MTMUB
 /MTMUH
 /MTSY
 /MTSYB
 /MTSYH
 /MT-Symbol
 /MTSYN
 /Music
 /MVBoli
 /MysticalPSMT
 /NagHammadiLS
 /NealCurieRuledSH
 /NealCurieSH
 /NebraskaPSMT
 /Neuropol-Medium
 /NevisonCasD
 /NewMilleniumSchlbkBoldItalicSH
 /NewMilleniumSchlbkBoldSH
 /NewMilleniumSchlbkExptSH
 /NewMilleniumSchlbkItalicSH
 /NewMilleniumSchlbkRomanSH
 /News702BT-Bold
 /News702BT-Italic
 /News702BT-Roman
 /Newton
 /NewZuricaBold
 /NewZuricaItalic
 /NewZuricaRegular
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NigelSadeSH
 /Nirvana
 /NuptialBT-Regular
 /OCRAbyBT-Regular
 /OfficePlanning
 /OldCentury
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OpenSymbol
 /OttawaPSMT
 /OttoMasonSH
 /OzHandicraftBT-Roman
 /OzzieBlack-Italic
 /OzzieBlack-Regular
 /PalatiaBold
 /PalatiaItalic
 /PalatiaRegular
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /PalmSpringsPSMT
 /Pamela
 /PanRoman
 /ParadisePSMT
 /ParagonPSMT
 /ParamountBold
 /ParamountItalic
 /ParamountRegular
 /Parchment-Regular
 /ParisianBT-Regular
 /ParkAvenueBT-Regular
 /Patrick
 /Patriot
 /PaulPutnamSH
 /PcEncodingLowerSH
 /PcEncodingSH
 /Pegasus
 /PenguinLightPSMT
 /PennSilvaSH
 /Percival
 /PerfectRegular
 /Pfn2BlackItalic
 /Phantom
 /PhilSimmonsSH
 /Pickwick
 /PipelinePlain
 /Playbill
 /PoorRichard-Regular
 /Poster
 /PosterBodoniBT-Italic
 /PosterBodoniBT-Roman
 /Pristina-Regular
 /Proxy1
 /Proxy2
 /Proxy3
 /Proxy4
 /Proxy5
 /Proxy6
 /Proxy7
 /Proxy8
 /Proxy9
 /Prx1
 /Prx2
 /Prx3
 /Prx4
 /Prx5
 /Prx6
 /Prx7
 /Prx8
 /Prx9
 /Pythagoras
 /Raavi
 /Ranegund
 /Ravie
 /Ribbon131BT-Bold
 /RMTMI
 /RMTMIB
 /RMTMIH
 /RMTMUB
 /RMTMUH
 /RobWebsterExtraBoldSH
 /Rockwell
 /Rockwell-Bold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /RomanC
 /RomanD
 /RomanS
 /RomanT
 /Romantic
 /RomanticBold
 /RomanticItalic
 /Sahara
 /SalTintorettoSH
 /SamBarberInitialsSH
 /SamPlimsollSH
 /SansSerif
 /SansSerifBold
 /SansSerifBoldOblique
 /SansSerifOblique
 /Sceptre
 /ScribbleRegular
 /ScriptC
 /ScriptHebrew
 /ScriptS
 /Semaphore
 /SerifaBT-Black
 /SerifaBT-Bold
 /SerifaBT-Italic
 /SerifaBT-Roman
 /SerifaBT-Thin
 /Sfn2Bold
 /Sfn3Italic
 /ShelleyAllegroBT-Regular
 /ShelleyVolanteBT-Regular
 /ShellyMarisSH
 /SherwoodRegular
 /ShlomoAleichemSH
 /ShotgunBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SignatureRegular
 /Signboard
 /SignetRoundhandATT-Italic
 /SignetRoundhand-Italic
 /SignLanguage
 /Signs
 /Simplex
 /SissyRomeoSH
 /SlimStravinskySH
 /SnapITC-Regular
 /SnellBT-Bold
 /Socket
 /Sonate
 /SouvenirITCbyBT-Demi
 /SouvenirITCbyBT-DemiItalic
 /SouvenirITCbyBT-Light
 /SouvenirITCbyBT-LightItalic
 /SpruceByingtonSH
 /SPSFont1Medium
 /SPSFont2Medium
 /SPSFont3Medium
 /SpsFont4Medium
 /SPSFont4Medium
 /SPSFont5Normal
 /SPSScript
 /SRegular
 /Staccato222BT-Regular
 /StageCoachRegular
 /StandoutRegular
 /StarTrekNextBT-ExtraBold
 /StarTrekNextPiBT-Regular
 /SteamerRegular
 /Stencil
 /StencilBT-Regular
 /Stewardson
 /Stonehenge
 /StopD
 /Storybook
 /Strict
 /Strider-Regular
 /StuyvesantBT-Regular
 /StylusBT
 /StylusRegular
 /SubwayRegular
 /SueVermeer4LightItalicSH
 /SueVermeer4LightSH
 /SueVermeer5MedItalicSH
 /SueVermeer5MediumSH
 /SueVermeer6DemiItalicSH
 /SueVermeer6DemiSH
 /SueVermeer7BoldItalicSH
 /SueVermeer7BoldSH
 /SunYatsenSH
 /SuperFrench
 /SuzanneQuillSH
 /Swiss721-BlackObliqueSWA
 /Swiss721-BlackSWA
 /Swiss721BT-Black
 /Swiss721BT-BlackCondensed
 /Swiss721BT-BlackCondensedItalic
 /Swiss721BT-BlackExtended
 /Swiss721BT-BlackItalic
 /Swiss721BT-BlackOutline
 /Swiss721BT-Bold
 /Swiss721BT-BoldCondensed
 /Swiss721BT-BoldCondensedItalic
 /Swiss721BT-BoldCondensedOutline
 /Swiss721BT-BoldExtended
 /Swiss721BT-BoldItalic
 /Swiss721BT-BoldOutline
 /Swiss721BT-Italic
 /Swiss721BT-ItalicCondensed
 /Swiss721BT-Light
 /Swiss721BT-LightCondensed
 /Swiss721BT-LightCondensedItalic
 /Swiss721BT-LightExtended
 /Swiss721BT-LightItalic
 /Swiss721BT-Roman
 /Swiss721BT-RomanCondensed
 /Swiss721BT-RomanExtended
 /Swiss721BT-Thin
 /Swiss721-LightObliqueSWA
 /Swiss721-LightSWA
 /Swiss911BT-ExtraCompressed
 /Swiss921BT-RegularA
 /Syastro
 /Sylfaen
 /Symap
 /Symath
 /SymbolGreek
 /SymbolGreek-Bold
 /SymbolGreek-BoldItalic
 /SymbolGreek-Italic
 /SymbolGreekP
 /SymbolGreekP-Bold
 /SymbolGreekP-BoldItalic
 /SymbolGreekP-Italic
 /SymbolGreekPMono
 /SymbolMT
 /SymbolProportionalBT-Regular
 /SymbolsAPlentySH
 /Symeteo
 /Symusic
 /Tahoma
 /Tahoma-Bold
 /TahomaItalic
 /TamFlanahanSH
 /Technic
 /TechnicalItalic
 /TechnicalPlain
 /TechnicBold
 /TechnicLite
 /Tekton-Bold
 /Teletype
 /TempsExptBoldSH
 /TempsExptItalicSH
 /TempsExptRomanSH
 /TempsSwashSH
 /TempusSansITC
 /TessHoustonSH
 /TexCatlinObliqueSH
 /TexCatlinSH
 /Thrust
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-ExtraBold
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Oblique
 /Times-Roman
 /Times-Semibold
 /Times-SemiboldItalic
 /TimesUnic-Bold
 /TimesUnic-BoldItalic
 /TimesUnic-Italic
 /TimesUnic-Regular
 /TonyWhiteSH
 /TransCyrillic
 /TransCyrillic-Bold
 /TransCyrillic-BoldItalic
 /TransCyrillic-Italic
 /Transistor
 /Transitional521BT-BoldA
 /Transitional521BT-CursiveA
 /Transitional521BT-RomanA
 /TranslitLS
 /TranslitLS-Bold
 /TranslitLS-BoldItalic
 /TranslitLS-Italic
 /TransRoman
 /TransRoman-Bold
 /TransRoman-BoldItalic
 /TransRoman-Italic
 /TransSlavic
 /TransSlavic-Bold
 /TransSlavic-BoldItalic
 /TransSlavic-Italic
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /TribuneBold
 /TribuneItalic
 /TribuneRegular
 /Tristan
 /TrotsLight-HMK
 /TrotsMedium-HMK
 /TubularRegular
 /Tunga-Regular
 /Txt
 /TypoUprightBT-Regular
 /UmbraBT-Regular
 /UmbrellaPSMT
 /UncialLS
 /Unicorn
 /UnicornPSMT
 /Univers
 /UniversalMath1BT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Italic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-CondensedOblique
 /UniversExtended-Bold
 /UniversExtended-BoldItalic
 /UniversExtended-Medium
 /UniversExtended-MediumItalic
 /Univers-Italic
 /UniversityRomanBT-Regular
 /UniversLightCondensed-Italic
 /UniversLightCondensed-Regular
 /Univers-Medium
 /Univers-MediumItalic
 /URWWoodTypD
 /USABlackPSMT
 /USALightPSMT
 /Vagabond
 /Venetian301BT-Demi
 /Venetian301BT-DemiItalic
 /Venetian301BT-Italic
 /Venetian301BT-Roman
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /VinetaBT-Regular
 /Vivaldii
 /VladimirScript
 /VoguePSMT
 /Vrinda
 /WaldoIconsNormalA
 /WaltHarringtonSH
 /Webdings
 /Weiland
 /WesHollidaySH
 /Wingdings-Regular
 /WP-HebrewDavid
 /XavierPlatoSH
 /YuriKaySH
 /ZapfChanceryITCbyBT-Bold
 /ZapfChanceryITCbyBT-Medium
 /ZapfDingbatsITCbyBT-Regular
 /ZapfElliptical711BT-Bold
 /ZapfElliptical711BT-BoldItalic
 /ZapfElliptical711BT-Italic
 /ZapfElliptical711BT-Roman
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZappedChancellorMedItalicSH
 /ZurichBT-BlackExtended
 /ZurichBT-Bold
 /ZurichBT-BoldCondensed
 /ZurichBT-BoldCondensedItalic
 /ZurichBT-BoldItalic
 /ZurichBT-ExtraCondensed
 /ZurichBT-Italic
 /ZurichBT-ItalicCondensed
 /ZurichBT-Light
 /ZurichBT-LightCondensed
 /ZurichBT-Roman
 /ZurichBT-RomanCondensed
 /ZurichBT-RomanExtended
 /ZurichBT-UltraBlackExtended
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

