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Recently, the state-of-the-art Al planners have significantly improved planning efficiency on Fully
Observable Nondeterministic planning (FOND) problems with strong cyclic solutions. These strong
cyclic solutions are guaranteed to achieve the goal if they terminate, implying that there is a possibility
that they may run into indefinite loops. In contrast, strong solutions are guaranteed to achieve the goal,
but few planners can effectively handle FOND problems with strong solutions. In this study, we aim
to address this difficult, yet under-investigated class of planning problems: FOND planning problems
with strong solutions. We present a planner that employs a new data structure, MRDAG (multi-root
directed acyclic graph), to define how the solution space should be expanded. Based on the
characteristics of MRDAG, we develop heuristics to ensure planning towards the relevant search
direction and design optimizations to prune the search space to further improve planning efficiency.
We perform extensive experiments to evaluate MRDAG, the heuristics, and the optimizations for
pruning the search space. Experimental results show that our strong algorithm achieves impressive
performance on a variety of benchmark problems: on average it runs more than three orders of
magnitude faster than the state-of-the-art planners, MBP and Gamer, while demonstrating significantly
better scalability.

Keywords: Fully observable nondeterministic (FOND) planning; strong cyclic planning, strong
planning.

1. Introduction

Fully-observable nondeterministic (FOND) planning is an important and challenging
research area.!? To effectively address nondeterministic planning problems, Cimatti ef al.3
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classified planning solutions into three categories: weak solutions have a probability to
achieve the goal; strong solutions are guaranteed to achieve the goal; and strong-cyclic
solutions may terminate and if they do, they are guaranteed to achieve the goal.® Thus,
strong solutions, if they exist, are more desirable than weak and strong-cyclic solutions as
they are guaranteed to achieve the goal.

Despite the importance of strong planning, it is an under-investigated area of FOND
planning. Among the planners that are capable of solving strong FOND problems, the two
best-known are arguably MBP and Gamer.* Both planners, however, employ symbolic
regression breadth-first search to search backward from the goal state to the initial state,
which makes it difficult for them to plan efficiently and scale to larger problems.

The goal in this paper is to present a planner that can offer state-of-the-art performance
on FOND planning problems with strong solutions. One possibility is to extend state-of-
the-art FOND planners such as FIP? and PRP so that they can return strong solutions.
Recall that these two FOND planners are not guaranteed to return a strong solution even if
one exists, but since they outperform Gamer and MBP on benchmark strong-cyclic
problems by several orders of magnitude, they might be able to outperform Gamer and
MBP on strong problems if they are extended to return strong solutions.

However, FIP and PRP have a common weakness: they rely on a classical deterministic
planner to establish a weak plan from each non-goal leaf state (i.e., a state that has not been
assigned an action in the solution state space) to the goal state. The use of classical planners
implies less control over planning efficiency. Specifically, when a classical planner runs
longer than expected, it is hard to determine whether it needs more time to finish or it is
stuck in some hopeless situation. This issue may aggravate if we have to plan under time
constraints. If it times out on any single search for a weak plan, the entire planning process
will fail.

Given the above discussion, we desire a planner that (1) has full control over how to
expand the solution space by not relying on a classical planner, and (2) uses heuristics to
ensure planning towards the relevant search direction, thus overcoming the inefficiency
inherent in the uninformed search methods employed by MBP and Gamer. There is an
additional property desirable of a strong planner: the ability to handle backtracks
efficiently.

To understand the importance of efficient backtracking in strong planning, recall that
cycles are constantly encountered and should be avoided during a strong planning process.
Suppose that a cycle is formed due to applying action a to state s. To break the cycle, state
s should choose a different action to expand the search space if it has more than one
applicable action. In case that state s only has one applicable action, then (1) action a will
be made inapplicable to state s; (2) state s becomes a dead-end as its only applicable action
a has been made inapplicable; and (3) the algorithm backtracks from state s. Backtrack will
continue until it reaches a state that has more than one applicable action. In other words,
backtrack has to occur step by step, where in each step, it needs to check the number of
actions applicable to each state, and backtrack until it reaches a state with more than one
applicable action. Hence, to handle cycles more efficiently, we propose to distinguish states
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with one applicable action from those with more than one applicable action. In fact, states
with only one applicable action are very common. We examined the benchmark problems
in the International Planning Competition 2008 (IPC 2008)® and found that about 25% of
the states had only one applicable action. Moreover, as the planning process continues,
more states will become those with only one applicable action because if an applicable
action results in a cycle or a dead-end, this action will be made inapplicable to the state. As
a result, the state will have fewer applicable actions.

In light of the three desirable properties mentioned above, we present a planner that
builds upon three novel ideas. First, we propose a new data structure, MRDAG (multi-root
directed acyclic graph), which defines how the solution space should be expanded by
distinguishing states with one applicable action from those with more than one applicable
action. Second, we equip a MRDAG with heuristics that define the order in which the
actions applicable to a state within the MRDAG should be chosen. Third, we prune the
search space with five optimizations based on the characteristics of MRDAG to further
improve the planning efficiency.

We conducted extensive experiments to evaluate the proposed planner and compare
performance between our planner and other state-of-the-art planners, i.e., MBP and Gamer.
To ensure fairness in our evaluation, all the planning domains were derived from the FOND
track of IPC 2008.% Experimental results show that our strong algorithm achieves
impressive performance on a variety of benchmark problems: on average, it runs more than
three orders of magnitude faster than MBP and Gamer and demonstrates significantly
better scalability. Therefore, our planner has achieved the state-of-the-art performance on
FOND planning problems with strong solutions.

2. Nondeterministic Planning

We introduce the definitions and notation in nondeterministic planning that will be used in
the rest of this paper.

Definition 1. A nondeterministic planning domain is a 4-tuple ¥, = (P, S, 4, ¥), where P
is a finite set of propositions; S < 27 is a finite set of states; 4 is a finite set of actions; and
y: 8 x A — 25 is the state-transition function.

Definition 2. A planning problem {so, g, X.) consists of three components, namely, the
initial state so, the goal condition g, and the planning domain ..

Definition 3. Given a planning problem {so, g, >.), a policy is a function z: Sz — A4, where
Sz < S is the set of states to which an action has been assigned. In other words, Vs €
Sz:da € A such that (s, a) € . We use Sz(s) to denote the set of states reachable from s
using .

Definition 4 (taken from Bryce & Buffet’). A policy 7z is closed with respect to s iff
Sz(s) < Sz. mis proper with respect to s iff the goal state can be reached using & from
all s” € Sz(s). wis acyclic with respect to s; iff there is no trajectory (si, 7z(s:), si+1, Z(si+1), -- -,
Sjy 7(S)y +evr Sk 7T(5%), ..., S») With jand ksuch that i <j <k <mands; = s 7is a strong
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solution for the nondeterministic problem iff 7 is closed, proper, and acyclic with respect
to the initial state so.

Note that an acyclic zdefines (and hence can be equivalently represented as) a directed
acyclic graph (DAG) Gz= {Vz, Ez}, where Vz= Sz U {y(s, 7(s)) | s € Sz} is the set of
vertices in Grand Ez= {(s, s") | s € Szand s" € ¥ (s, 7(s))} is the set of edges. G (s0), a
directed acyclic graph (DAG) rooted at so, initially contains only the initial state so. Our
strong planner aims to augment 7 (or equivalently, Gz) by using a special data structure,
MRDAG, to guide the expansion of the solution space, as discussed next.

3. Multi-Root Directed Acyclic Graph (MRDAG)

In this section, we define a MRDAG and its properties formally. We begin by presenting
an informal overview of it.

Figure 1 shows an example of how MRDAGs control the expansion of the solution
space. All the nodes in Fig. 1 represent states involved in the expansion of the solution
space. Each M;is a MRDAG, which consists of a set of DAGs. The set of roots of the
DAGs in a MRDAG is called the rootset of the MRDAG. The black nodes in Fig. 1 are the
states in the rootset of a MRDAG. Except for the initial state s, a state is in a rootset if and
only if it has more than one applicable action.

The search process begins by expanding the rootset of the first MRDAG, M, which
has only one element, so. The process of state expansion continues until every leaf node
either is a goal node or has more than one applicable action. The non-leaf nodes expanded
so far belong to M, and the set of non-goal leaf nodes defines the rootset of M>. Each state
in the rootset of M, is expanded in a similar manner until each leaf node either is a goal
node or has more than one applicable action, and those non-goal leaf nodes belong to the
rootset of M3. This process produces a sequence of MRDAGs and stops when all leaf nodes
are goal nodes.

Hence, the MRDAGs define how the solution space is expanded: they separate the
“easy” states (i.e., states with only one applicable action) from the “hard” states (i.e., states
with more than one applicable action). The questions then are (1) how to impose an
ordering on the actions to be chosen for a hard state, and (2) how to impose an ordering on

Fig. 1. Solution expansion with MRDAGs.
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the states to be expanded in the same rootset? As we will see, heuristics will be used to
impose these orderings.
Next, we define a MRDAG and its properties formally.

Definition 5. A MRDAG M = {Su, 7} consists of two elements, namely, a rootset Sy
and a policy 7y, with the following properties:

(1) Smr= {81, Sr2, ..., S} < Smu consists of a set of states, where Sms denotes the set of
states contained in 7my;

(2) VY(s,a)e ms,s & Sur— |A(s)| = 1, where A(s) is the set of actions applicable to state s.
That is, if s is not in Sy, then it has exactly one applicable action.

Intuitively, before a MRDAG is expanded, its rootset Sis- includes all non-goal leaf states
in G(s0). For convenience, we will say that a state s belongs to M if s € Sz

Definition 6. A state s is called an outsider of a MRDAG M = {Su, my} if there exists
(s, a") € mssuchthats € y(s’, a’) and one of the following two conditions is satisfied:

(1) sisagoal;
(2) sisnota goal, |4(s)| > 1 and s does not belong to M or any of M’s ancestry MRDAGs
(i.e., MRDAGS constructed prior to M).

Definition 6 implies that the outsiders of a MRDAG M are not part of M. These outsiders
represent the set of all leaf states generated by M in Gz(so).

Definition 7. A MRDAG M. rooted at Si.- is a child of MRDAG M, if Syc- is the set of
all non-goal outsiders of M,. M, is called the parent of M..

Definition 7 implies that a MRDAG can have at most one child MRDAG. Definition 6
and Definition 7 together imply the following property for MRDAG expansion.

Property (MRDAG Expansion). Given a MRDAG M = {Su, mu}, if (1) there exists a
state s” that does not appear in M’s ancestry MRDAGs; (2) |4(s”)| = 1; and (3) there exists
(s, a) € mysuch thats” € ¥(s, a), then (s', a’) € my, where a’ is the only applicable action
of s’

Definition 8. A MRDAG M = {Su, 7mu} is feasible if the following three conditions are
satisfied:

(1) V(s, a) € my, applying a to s does not lead to a cycle in Gz (s0);
(2) V(s, a) € my, applying a to s does not lead to a dead-end; and
(3) the child of M, if any, is also feasible.

Definition 9. A set of states Suy = {s/1, S2, ..., S} is called a feasible rootset if a feasible
MRDAG rooted at Sy can be created.
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Definition 10. A strong solution iS & = mun U Tz U -+ U T, Where mu, Tz, ..., T
are the policies of a sequence of feasible MRDAGS M1, Mo, ..., M,, if the following three
conditions are satisfied:

(1) M isrooted at s, i.e., the initial state;

(2) M;is the parent of M;»y fori=1,2,3,...,n—1;and

(3) all the outsiders of M, are goal states.

4. Strong Planning Algorithm
4.1. Algorithm outline

Figure 2 outlines our strong planning algorithm. In line 1, the rootset R of the first MRDAG
is initialized to be the initial state so of the planning problem (so, g, ). The policy 7,
which stores the union of the policies of the MRDAGSs constructed up to this point, is
initialized to be an empty set. While R is not empty (line 2), the function GET-NEXT-
SET-OF-ACTIONS assigns an applicable action to each state in R, and the resulting state-
action pairs are inserted into 7y, the policy associated with the current MRDAG (line 3).
Note that GET-NEXT-SET-OF-ACTIONS enumerates all possible combinations of
actions applicable to the states in R, and returns a different combination of actions for the
same rootset every time it is invoked. For example, assume that there are two states in R,
namely, s.1 and s,2. If |[4(s,1)| = 2 and |4 (s,2)| = 3, then there are 6 possible combinations for

Global Variables: 7, {so, g, Z)

Function STRONG_PLANNING

1. R «{so};me<¢ [*R is the rootset of the MRDAG*/
2. whileR# ¢do

3. 7 < GET-NEXT-SET-OF-ACTIONS(R)

4. if 7 = gthen

5. if R = {so} then return FAILURE else

6. BACKTRACK(R)

7. endif

8. else

9. if BUILD-MRDAG(my) <> FAILURE then

10. T~ T 7tn

11. if AIl-GOAL-OUTSIDERS(R, mu) then
12. return =

13. else

14. R < GET-OUTSIDERS(R, 7mu)
15. endif

16. endif

17. endif

18. endwhile

Fig. 2. Outline of the strong planning algorithm.
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Function BUILD-MRDAG (711)

1 Throot <— TTM

2. foreach (s, a) € (oor) do

3 if EXPAND-MRDAG(7u, s, a) = FAILURE then
4. return FAILURE

5 endif

6. endfor

7. return SUCCESS

Fig. 3.  Algorithm for building a feasible MRDAG.

creating my. Each time GET-NEXT-SET-OF-ACTIONS returns one combination to 7y
(line 3). If all the combinations have been exhausted (line 4), GET-NEXT-SET-OF-
ACTIONS will return an empty set, which means R is not a feasible rootset (see
Definition 9), i.e., no feasible MRDAG can be built from R. When this happens, the
algorithm will check whether R includes only so (line 5). If so, there is no solution to the
given planning problem. However, if R includes some states other than sy, backtrack will
occur (line 6). As no feasible MRDAGS can be built based on R, the MRDAG leading to R
(i.e., R’s parent MRDAG) is not feasible and should be discarded. Specifically, all state-
action pairs in the policy of R’s parent MRDAG are discarded (the policy 7 is updated
accordingly) and only its rootset is kept. Hence, the result of the backtrack is to assign the
parent’s rootset to R. Therefore, in the next iteration (line 3), GET-NEXT-SET-OF-
ACTIONS will assign a different set of actions to the states in R so that the algorithm will
seek an alternative solution by building a different MRDAG.

If GET-NEXT-SET-OF-ACTIONS returns a non-empty set (line 8), the algorithm
attempts to build a feasible MRDAG by invoking the function BUILD-MRDAG (line 9).
Figure 3 illustrates how to build a feasible MRDAG. If a feasible MRDAG is not found
(i.e., BUILD-MRDAG returns failure), the current iteration ends. In the next iteration
(line 3), GET-NEXT-SET-OF-ACTIONS will return a different set of actions to the states
in R.

On the other hand, if a feasible MRDAG can be built (i.e., BUILD-MRDAG returns
success), the algorithm adds the state-action pairs in 7y to the solution policy 7 (line 10).
Then, it checks whether the outsiders of the current MRDAG are all goal states (line 11).
If so, a solution has been found (line 12) according to Definition 10. Otherwise, the set of
non-goal outsiders of the current MRDAG is assigned to R, which will be the rootset of the
child MRDAG (line 14). The algorithm then continues to the next iteration and attempts to
build a feasible child MRDAG based on the new rootset.

4.2. Building a feasible MRDAG

EXPAND-MRDAG is shown in Fig. 4. For each state s” € ¥ (s, @) that is not a goal state
(line 1), the algorithm checks whether s has already been assigned an action in 7 or 7/
(line 2). If so, the algorithm uses Tarjan’s algorithm® to check whether a cycle has been
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Function EXPAND-MRDAG (7, s, a)
1. foreachs” € (s, a) & NOT-GOAL(s") do

2 if s’ € Szors” € Smsthen

3 if DETECT-CYCLE(7ww my) = TRUE then
4. return FAILURE

5. endif

6 elseif |4(s")| = 1 then

7 v — O {(s',a)} with a” € A(s")

8 if EXPAND-MRDAG (7, s', a") = FAILURE then
9. return FAILURE

10. endif

11. elseif |4(s")| = 0 then /*dead-end*/

12. return FAILURE

13. endif

14. endfor

15. return SUCCESS

Fig. 4. Helper function for building a feasible MRDAG.

formed in the graph represented by the union of 7 and 7y as a result of applying a to s
(line 3).2If a cycle is detected, the use of action a violates the acyclic property of MRDAG
(see Definition 8), and the algorithm returns FAILURE (line 4 in Figure 4). Otherwise, the
use of a is safe. Since s” has been already assigned an action, there is no need to expand it.

If s” has not been assigned any action, the algorithm checks the number of actions
applicable to s”. If there is only one applicable action (line 6), it should belong to the current
MRDAG (see Definition 5 and Property (MRDAG expansion)). Hence, the algorithm
includes s” in the current MRDAG (line 7) and then recursively expands s” (lines 8—10). On
the other hand, if s” has no applicable actions (line 11), it is a dead-end and a failure has
been detected (line 12), since a feasible MRDAG should not lead to any dead-end (see
Definition 8). Note that the algorithm does not handle the case where |4(s”)| > 1. The reason
is that s” is an outsider of the current MRDAG because it has more than one applicable
action (see Definition 6).

4.3. An illustrative example

To better understand our strong planning algorithm, we apply it to the following simplified
blocksworld problem (see Fig. 5), which will serve as our running example. In this
problem, three actions are possible: the deterministic action put-down(X) and two
nondeterministic actions, pick-up(X, Y) and put-on(X, Y). Here, X and Y are variables that
represent block A, B, or C. put-down(X) puts block X onto the table. The nondeterministic
action pick-up(X, Y) can pick up block X from the top of block Y. However, it may
possibly drop block X onto the table due to the mechanical constraint. The nondeterministic

* When detecting cycles, we need to take the union of zand 7, because a cycle could be formed among the states
belonging to different MRDAGS.
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Fig. 5. Blocksworld example.

action put-on(X, Y) can put the held block X onto block Y. Similarly, the held block X
may fall onto the table. The aim is to move the blocks so that goal g can be reached from
the initial state so.

The algorithm begins by setting the rootset R of the first MRDAG to {so} (line 1 in
Fig. 2). Next, it computes the policy 7y based on R (line 3 in Fig. 2). Since pick-up(B, A)
is the only applicable action to so, 7y is set to {(so, pick-up(B, A))}. Since my is not
empty, the algorithm attempts to build a feasible MRDAG by invoking BUILD-MRDAG
(line 9 Fig. 2). Subsequently, BUILD-MRDAG invokes EXPAND-MRDAG to recursively
expand the MRDAG (line 3 in Fig. 3). Applying pick-up(B, A) to so results in two states
(line 1 in Fig. 4). One is the goal since block B may fall onto the table. The other is state s;
in Fig. 5, which is a state in which B is held. The goal state will be an outsider of the current
MRDAG (see Definition 6). Since s; has three applicable actions, namely, put-down(B),
put-on(B, A), and put-on(B, C), it is also an outsider of the current MRDAG. Then, a new
MRDAG, M,, is created with mn = {(so, pick-up(B, A))}, and s; is the non-goal outsider.
The control of the algorithm returns to line 9 of Fig. 2. The solution zis updated to be 7«
Y mn ={(s0, pick-up(B, A))} (line 10 of Fig. 2). Since state s is not a goal state and it is
an outsider of the current MRDAG, R = {51} (line 14 in Fig. 2).

The algorithm begins the next iteration by selecting an applicable action for s;. Let us
assume that the algorithm selects put-on(B, C) (line 3 of Fig. 2). It then invokes BUILD-
MRDAG with the argument my = {(s1, put-on(B, C))} (line 9 of Fig. 2). Subsequently,
BUILD-MRDAG invokes EXPAND-MRDAG to recursively expand the MRDAG (lines 1—
3 of Fig. 3). Applying put-on(B, C) to s; also leads to two states, namely, (1) the goal state,
since B may fall onto the table, and (2) state s, as shown in Fig. 5 (line 1 in Fig. 4). State
s2 has only one applicable action, i.e., pick-up(B, C). So the algorithm adds s> to the current
MRDAG and recursively invokes EXPAND-MRDAG (lines 8—10 of Fig. 4). Now, my/ =
{(s1, put-on(B, C)), (s2, pick-up(B, C))}. Applying pick-up(B, C) to s, results in two states,
namely, the goal state and a previously explored state, i.e., si. The handling of the goal
state is the same as above, so let us focus on state si. The algorithm detects that s; has been
assigned an action (line 2 of Fig. 4) and then finds that a cycle has been formed between s
and s> (line 3 of Fig. 4). Hence, EXPAND-MRDAG returns failure (line 4 in Fig. 4).
Subsequently, BUILD-MRDAG also returns failure (line 4 in Fig. 3). Hence, policy 7 =
(80, pick-up(B, A)) is not updated. Then, the strong planning algorithm (Fig. 2) selects
another action, say put-down(B), for R = {51}, and invokes BUILD-MRDAG (line 9 in
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Fig. 2) with ms = {(s1, put-down(B))}. BUILD-MRDAG then invokes EXPAND-MRDAG.
As put-down(B) is a deterministic action, it only results in a single state, which is the goal
(line 1 of Fig. 4). The goal state is an outsider of the MRDAG. Since there are no other
states generated by put-down(B), the algorithm will return SUCCESS (line 15 in Fig. 4) to
BUILD-MRDAG and then to the strong planning algorithm in Fig. 2. The current MRDAG
M, includes the policy s = {(s1, put-down(B))}. Then, policy 7 is updated by 7« 7
o, 1.e., = {(s0, pick-up(B, A))} U {(s1, put-down(B))} = {(so, pick-up(B, A)), (s1, put-
down(B))} (line 10 of Fig. 2). Since the outsiders of MRDAG M, include only the goal
state, the algorithm terminates and returns the final policy 7z (lines 10—12 in Figure 2).

5. Heuristics

When using MRDAG to expand the solution space, we need to answer two questions. First,
which state in a given rootset should be expanded first if the rootset contains more than
one state? Second, which action applicable to a state in a rootset should be applied first if
the state contains more than one applicable action? We answer these questions by designing
two heuristics, as described below.

To answer the first question, assume that the rootset of a MRDAG is Su = {541,
812, -+, Sri}. Using the most constrained state (MCS) heuristic, we sort the states in Sy, in
increasing order of the number of actions applicable to a state. The MCS heuristic enables
a simple and efficient way to implement GET-NEXT-SET-OF-ACTIONS (line 3 of Fig. 2).
Specifically, assume that Sis = {sy1, S2, ..., S} 1S sorted by means of the MCS heuristic.
For each state s, (1 <i<k) in Sy, let A; = (ai, ai, ..., agmy) be the list of applicable actions
to s, and {mi) = |A(s,)| be the number of applicable actions. We assume that GET-NEXT-
SET-OF-ACTIONS retrieves the actions in 4; in a fixed order, i.e., a1, an, ..., dim). Then,
GET-NEXT-SET-OF-ACTIONS returns 7y = {(sr1, an), (s», az), ..., (S#, an)} first. If it
does not result in a feasible MRDAG, the function will try s,.’s next action ai» and
return {(s,1, a@12), (S,2, a21), ..., (Srk, ar1)}, then {(sy1, a13), (s.2, a21), ..., (S, ar1)}, ..., and
finally {(s.1, aim1y), (si2, @21) ..., (S, ax1)}. If still no feasible MRDAG can be built, the
function will try s,2’s next action as; and return {(s.1, an), (5,2, a22), ..., (S ax)}. If this
combination does not lead to a feasible MRDAG, then the function will return {(s,1, a12),
(512, @22), ..., (Srk, A1)}, {(Sr1, @13), (52, @22), ..., (Srk, ax1)}, ..., and finally {(s,1, aiim1y), (sr2,
axm), ..., (Srk, ampy)}. Here is the rationale behind the MCS heuristic: as s,1 has the least
number of applicable actions, GET-NEXT-SET-OF-ACTIONS can quickly enumerate its
applicable actions and then start to consider the rest of the states in sorted order.

To answer the second question, we use the least heuristic distance (LHD) heuristic.
For each state s, € Sy = {s/1, 12, ..., S} (120 £ k), we sort its applicable actions in
increasing order of the heuristic distance to the goal. Specifically, applying an action a to
s, may result in a set of states. Among these resulting states, the one that yields the shortest
distance to the goal is used to define the heuristic distance of action a. In our
implementation, we used the same heuristic as FF,’ i.e., relaxed plans, to estimate the
heuristic distance. To break ties, actions with fewer effects are given higher priority. The
rationale is that if an action has fewer effects, it is less nondeterministic and hence contains
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fewer unintended effects. If a tie still exists, then it is broken arbitrarily. It should be easy
to see that MCS and LHD can be applied in combination.

Theorem 1. A MRDAG M = {Su, mu} can be uniquely identified by Sy and the set of
actions applied to Sy, A4

Proof. According to Definition 5, except the states in S, all other states in M only have
a single applicable action. Hence, after applying A4, to Sy, the expansion of M has
no variations. If a generated state is not already in Sz, then it either is an outsider of M
if it has more than one applicable action, or can continue to expand M by applying its
only applicable action. Therefore, with Sy, and 4,, we cannot obtain two different
MRDAGS. a

Theorem 2. The proposed strong planning algorithm in Figure 2 is sound and complete.

Proof. To prove soundness, assume that the algorithm returns a solution consisting of
a sequence of MRDAGs M|, M, ..., M,, where M, is the parent of My fori=1,2,3, ...,
n — 1. Note that each MRDAG in the sequence is feasible, as our algorithm maintains the
feasibility of MRDAG:sS, i.¢., there are no dead-ends (see lines 11 and 12 of Fig. 4) or cycles
(see lines 3 and 4 of Fig. 4) in the MRDAGs. In addition, the possible non-goal leaf states
can only exist in a MRDAG’s outsiders (see lines 6—13 of Fig. 4), which form the root of
its child. Hence, we only need to check the last MRDAG, M,. The algorithm terminates
with success if and only if the outsiders of M, are all goal states (lines 11 and 12 in Fig. 2).
Hence, no non-goal leaf states are possible in the solution, i.e., there is a path leading to
the goal from any non-goal state in the solution without going through any cycles.
Completeness can be proved by contradiction. Suppose that there is a solution to the
given planning problem but our planning algorithm terminates in failure. According to
Definition 10, we can represent the solution by a sequence of MRDAGs, M, M, ..., and
M,,. Here, M; is the parent of M+ fori=1,2,3, ..., n— 1 and M,’s rootset contains only
the initial state so of the planning problem. According to Theorem 1, M, is determined by
{so} and an action a. Our algorithm should be able to try action a because our algorithm
exhaustively tries all the possible combinations of actions applicable to the rootset to
expand a MRDAG. Hence, M; will be created based on the root so and action a. By
induction, it will create Mo, ..., M,, which is a solution to the planning problem. Hence, we
obtain a contradiction. O

6. Pruning the Search Space

During the planning process, some state-action pairs always lead to cycles or dead-ends
and hence result in infeasible MRDAGs. If such state-action pairs are not marked up, the
planning algorithm may repeatedly try to use them to expand MRDAGSs, which may
negatively impact efficiency. It is therefore desirable to permanently disable such state-
action pairs so that our planning algorithm will not attempt to use them to expand the search
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space. For our purpose, disabling a state-action pair (s, @) amounts to modifying the state-
transition function yin Definition 1, i.e., making action a inapplicable to state s. Note that
when disabling some state-action pairs, we need to ensure that the resulting planning
problem is strongly-equivalent to the original planning problem as defined in Definition 11.

Definition 11. A planning problem (so; g7 X'} is strongly-equivalent to problem (sy, g, X.)
if s0”= 509, g”= g, and the set of strong solutions for {sy; g7 2} is equal to the set of strong
solutions for (sq, g, 2.).

Theorem 3. Our planning algorithm remains sound and complete if the resulting planning
problem is strongly-equivalent to the original planning problem by disabling some state-
action pairs.

Proof. The definition of MRDAG and its expansion property ensure that if a solution is
found, it will be connected, acyclic, and dead-end free. Hence, soundness is maintained. In
addition, since the resulting planning problem is strongly-equivalent to the original
planning problem, only those state-action pairs that are irrelevant to strong solutions are
disabled. Hence, the expansion of MRDAGs will be the same as it does for the original
planning problem except that the expansion is conducted in a smaller, pruned search space.
Hence, completeness is maintained. O

To prune the search space, we modify our algorithm to allow state-action pairs to be
disabled in the function EXPAND-MRDAG before it returns FAILURE (see Fig. 4). We
employ two constraints for disabling state-action pairs:

(1) We only disable state-action pairs that belong to the current MRDAG under expansion.
This is to ensure that state-action pairs in the ancestry MRDAGs are not affected.

(2) The resulting planning problem (sy, g, >") must be strongly-equivalent to the original
planning problem (sy, g, 2.), where 3/ is the same as domain Y, except that the state-
transition function is modified to account for the disabled state-action pairs.

Given the above discussion, we propose five optimizations that can help prune the
search space.

Optimization 1. Suppose that a MRDAG M = {Su, 7} is currently under expansion.
During the execution of EXPAND-MRDAG (see Fig. 4), a dead-end s is found (see line 11
in Fig. 4). Let Sps = {sp | s € ¥(sp, M (sp))} be the set of parent states of s under the current
policy my for the MRDAG M. For each s, in Sy, we permanently disable the state-action
pair (sp, m(sp)). Then, for each s,, we recursively apply the above procedure until it reaches
a state s, in the rootset Sy such that (s,, ms(s-)) is also disabled.

Theorem 4. Our planning algorithm remains sound and complete with Optimization 1.

Proof. Optimization 1 only disables state-action pairs that lead to a dead-end. Since no
strong solutions can include dead-ends, the planning problem that resulted from disabling
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such state-action pairs is strongly-equivalent to the original planning problem. According
to Theorem 3, our planning algorithm is sound and complete. O

Optimization 2. Suppose that a MRDAG M = {Su, 7} is currently under expansion.
During the execution of EXPAND-MRDAG (see Fig. 4), if the addition of a state-action
pair (s, a) would create a cycle consisting of states that are not part of any rootsets, then we
can treat s as a dead-end and apply the procedure specified in Optimization 1.

Theorem 5. Our planning algorithm remains sound and complete with Optimization 2.

Proof. Without loss of generality, Fig. 6 illustrates a dead-end cycle discussed in
Optimization 2. The rootset consists of states s, 5,2, ..., S# Applying action a to state s
creates a cycle in which no states belong to any rootsets. According to Definition 5, states
that are not in the rootset only have one applicable action. Hence, all the states involved in
the cycle have only one applicable action. It implies that these states will inevitably get
involved in the cycle since they do not have other actions leading to other paths. Hence,
any states on the cycle cannot be in any strong solution to the original planning problem.
Therefore, the planning problem that resulted from the use of Optimization 2 is strongly-
equivalent to the original planning problem. Hence, according to Theorem 3, our planning
algorithm is sound and complete. O

Srk .\‘
O i

Fig. 6. Illustration of Optimization 2.

Optimization 3. Suppose that a MRDAG M = {Su, 7} is currently