
International Journal on Artificial Intelligence Tools
Vol. 23, No. 6 (2014) 1460028 (21 pages)
c© World Scientific Publishing Company

DOI: 10.1142/S0218213014600288

1460028-1

Fast Strong Planning for FOND Problems with
Multi-Root Directed Acyclic Graphs

Andres Calderon Jaramillo, Jicheng Fu

Computer Science Department, University of Central Oklahoma
100 North University Drive, Edmond, OK 73034, USA

acalderonjaramillo@uco.edu
jfu@uco.edu

Vincent Ng, Farokh B. Bastani, I-Ling Yen

Computer Science Department, University of Texas at Dallas
800 W. Campbell Road, Richardson, Texas 75080-3021, USA

vince@hlt.utdallas.edu
bastani@utdallas.edu
ilyen@utdallas.edu

Received 1 May 2014
Accepted 26 September 2014
Published 26 December 2014

Recently, the state-of-the-art AI planners have significantly improved planning efficiency on Fully
Observable Nondeterministic planning (FOND) problems with strong cyclic solutions. These strong
cyclic solutions are guaranteed to achieve the goal if they terminate, implying that there is a possibility
that they may run into indefinite loops. In contrast, strong solutions are guaranteed to achieve the goal,
but few planners can effectively handle FOND problems with strong solutions. In this study, we aim
to address this difficult, yet under-investigated class of planning problems: FOND planning problems
with strong solutions. We present a planner that employs a new data structure, MRDAG (multi-root
directed acyclic graph), to define how the solution space should be expanded. Based on the
characteristics of MRDAG, we develop heuristics to ensure planning towards the relevant search
direction and design optimizations to prune the search space to further improve planning efficiency.
We perform extensive experiments to evaluate MRDAG, the heuristics, and the optimizations for
pruning the search space. Experimental results show that our strong algorithm achieves impressive
performance on a variety of benchmark problems: on average it runs more than three orders of
magnitude faster than the state-of-the-art planners, MBP and Gamer, while demonstrating significantly
better scalability.

Keywords: Fully observable nondeterministic (FOND) planning; strong cyclic planning, strong
planning.

1. Introduction

Fully-observable nondeterministic (FOND) planning is an important and challenging
research area.1,2 To effectively address nondeterministic planning problems, Cimatti et al.3

In
t.

J.
 A

rt
if

. I
nt

el
l.

T
oo

ls
 2

01
4.

23
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 D

r.
 J

ic
he

ng
 F

u
on

 0
1/

05
/1

5.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

http://dx.doi.org/10.1142/S0218213014600288

classified planning solutions into three categories: weak solutions have a probability to
achieve the goal; strong solutions are guaranteed to achieve the goal; and strong-cyclic
solutions may terminate and if they do, they are guaranteed to achieve the goal.3 Thus,
strong solutions, if they exist, are more desirable than weak and strong-cyclic solutions as
they are guaranteed to achieve the goal.

Despite the importance of strong planning, it is an under-investigated area of FOND
planning. Among the planners that are capable of solving strong FOND problems, the two
best-known are arguably MBP and Gamer.4 Both planners, however, employ symbolic
regression breadth-first search to search backward from the goal state to the initial state,
which makes it difficult for them to plan efficiently and scale to larger problems.

The goal in this paper is to present a planner that can offer state-of-the-art performance
on FOND planning problems with strong solutions. One possibility is to extend state-of-
the-art FOND planners such as FIP2 and PRP5 so that they can return strong solutions.
Recall that these two FOND planners are not guaranteed to return a strong solution even if
one exists, but since they outperform Gamer and MBP on benchmark strong-cyclic
problems by several orders of magnitude, they might be able to outperform Gamer and
MBP on strong problems if they are extended to return strong solutions.

However, FIP and PRP have a common weakness: they rely on a classical deterministic
planner to establish a weak plan from each non-goal leaf state (i.e., a state that has not been
assigned an action in the solution state space) to the goal state. The use of classical planners
implies less control over planning efficiency. Specifically, when a classical planner runs
longer than expected, it is hard to determine whether it needs more time to finish or it is
stuck in some hopeless situation. This issue may aggravate if we have to plan under time
constraints. If it times out on any single search for a weak plan, the entire planning process
will fail.

Given the above discussion, we desire a planner that (1) has full control over how to
expand the solution space by not relying on a classical planner, and (2) uses heuristics to
ensure planning towards the relevant search direction, thus overcoming the inefficiency
inherent in the uninformed search methods employed by MBP and Gamer. There is an
additional property desirable of a strong planner: the ability to handle backtracks
efficiently.

To understand the importance of efficient backtracking in strong planning, recall that
cycles are constantly encountered and should be avoided during a strong planning process.
Suppose that a cycle is formed due to applying action a to state s. To break the cycle, state
s should choose a different action to expand the search space if it has more than one
applicable action. In case that state s only has one applicable action, then (1) action a will
be made inapplicable to state s; (2) state s becomes a dead-end as its only applicable action
a has been made inapplicable; and (3) the algorithm backtracks from state s. Backtrack will
continue until it reaches a state that has more than one applicable action. In other words,
backtrack has to occur step by step, where in each step, it needs to check the number of
actions applicable to each state, and backtrack until it reaches a state with more than one
applicable action. Hence, to handle cycles more efficiently, we propose to distinguish states

1460028-2

A. C. Jaramillo et al.

In
t.

J.
 A

rt
if

. I
nt

el
l.

T
oo

ls
 2

01
4.

23
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 D

r.
 J

ic
he

ng
 F

u
on

 0
1/

05
/1

5.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

with one applicable action from those with more than one applicable action. In fact, states
with only one applicable action are very common. We examined the benchmark problems
in the International Planning Competition 2008 (IPC 2008)6 and found that about 25% of
the states had only one applicable action. Moreover, as the planning process continues,
more states will become those with only one applicable action because if an applicable
action results in a cycle or a dead-end, this action will be made inapplicable to the state. As
a result, the state will have fewer applicable actions.

In light of the three desirable properties mentioned above, we present a planner that
builds upon three novel ideas. First, we propose a new data structure, MRDAG (multi-root
directed acyclic graph), which defines how the solution space should be expanded by
distinguishing states with one applicable action from those with more than one applicable
action. Second, we equip a MRDAG with heuristics that define the order in which the
actions applicable to a state within the MRDAG should be chosen. Third, we prune the
search space with five optimizations based on the characteristics of MRDAG to further
improve the planning efficiency.

We conducted extensive experiments to evaluate the proposed planner and compare
performance between our planner and other state-of-the-art planners, i.e., MBP and Gamer.
To ensure fairness in our evaluation, all the planning domains were derived from the FOND
track of IPC 2008.6 Experimental results show that our strong algorithm achieves
impressive performance on a variety of benchmark problems: on average, it runs more than
three orders of magnitude faster than MBP and Gamer and demonstrates significantly
better scalability. Therefore, our planner has achieved the state-of-the-art performance on
FOND planning problems with strong solutions.

2. Nondeterministic Planning

We introduce the definitions and notation in nondeterministic planning that will be used in
the rest of this paper.

Definition 1. A nondeterministic planning domain is a 4-tuple ∑ = (P, S, A, γ), where P
is a finite set of propositions; S ⊆ 2P is a finite set of states; A is a finite set of actions; and
γ : S × A → 2S is the state-transition function.

Definition 2. A planning problem 〈s0, g, ∑〉 consists of three components, namely, the
initial state s0, the goal condition g, and the planning domain ∑.

Definition 3. Given a planning problem 〈s0, g, ∑〉, a policy is a function π : Sπ → A, where
Sπ ⊆ S is the set of states to which an action has been assigned. In other words, ∀s ∈
Sπ : ∃a ∈ A such that (s, a) ∈ π. We use Sπ (s) to denote the set of states reachable from s
using π.

Definition 4 (taken from Bryce & Buffet7). A policy π is closed with respect to s iff
Sπ (s) ⊆ Sπ . π is proper with respect to s iff the goal state can be reached using π from
all s′ ∈ Sπ (s). π is acyclic with respect to si iff there is no trajectory (si, π(si), si+1, π(si+1), …,
sj, π (sj), …, sk, π (sk), …, sn) with j and k such that i ≤ j < k ≤ n and sj = sk. π is a strong

1460028-3

Fast Strong Planning for FOND Problems with MRDAGs

In
t.

J.
 A

rt
if

. I
nt

el
l.

T
oo

ls
 2

01
4.

23
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 D

r.
 J

ic
he

ng
 F

u
on

 0
1/

05
/1

5.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

A. C. Jaramillo et al.

solution for the nondeterministic problem iff π is closed, proper, and acyclic with respect
to the initial state s0.

Note that an acyclic π defines (and hence can be equivalently represented as) a directed
acyclic graph (DAG) Gπ = {Vπ , Eπ}, where Vπ = Sπ ∪ {γ (s, π (s)) | s ∈ Sπ} is the set of
vertices in Gπ and Eπ = {(s, s′) | s ∈ Sπ and s′ ∈ γ (s, π (s))} is the set of edges. Gπ (s0), a
directed acyclic graph (DAG) rooted at s0, initially contains only the initial state s0. Our
strong planner aims to augment π (or equivalently, Gπ) by using a special data structure,
MRDAG, to guide the expansion of the solution space, as discussed next.

3. Multi-Root Directed Acyclic Graph (MRDAG)

In this section, we define a MRDAG and its properties formally. We begin by presenting
an informal overview of it.

Figure 1 shows an example of how MRDAGs control the expansion of the solution
space. All the nodes in Fig. 1 represent states involved in the expansion of the solution
space. Each Mi is a MRDAG, which consists of a set of DAGs. The set of roots of the
DAGs in a MRDAG is called the rootset of the MRDAG. The black nodes in Fig. 1 are the
states in the rootset of a MRDAG. Except for the initial state s0, a state is in a rootset if and
only if it has more than one applicable action.

The search process begins by expanding the rootset of the first MRDAG, M1, which
has only one element, s0. The process of state expansion continues until every leaf node
either is a goal node or has more than one applicable action. The non-leaf nodes expanded
so far belong to M1, and the set of non-goal leaf nodes defines the rootset of M2. Each state
in the rootset of M2 is expanded in a similar manner until each leaf node either is a goal
node or has more than one applicable action, and those non-goal leaf nodes belong to the
rootset of M3. This process produces a sequence of MRDAGs and stops when all leaf nodes
are goal nodes.

Hence, the MRDAGs define how the solution space is expanded: they separate the
“easy” states (i.e., states with only one applicable action) from the “hard” states (i.e., states
with more than one applicable action). The questions then are (1) how to impose an
ordering on the actions to be chosen for a hard state, and (2) how to impose an ordering on

Fig. 1. Solution expansion with MRDAGs.

Goal

Initial state

M1

M2

M3

Mk

s0 g

1460028-4

In
t.

J.
 A

rt
if

. I
nt

el
l.

T
oo

ls
 2

01
4.

23
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 D

r.
 J

ic
he

ng
 F

u
on

 0
1/

05
/1

5.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 Fast Strong Planning for FOND Problems with MRDAGs

the states to be expanded in the same rootset? As we will see, heuristics will be used to
impose these orderings.

Next, we define a MRDAG and its properties formally.

Definition 5. A MRDAG M = {SMr, πM} consists of two elements, namely, a rootset SMr
and a policy πM, with the following properties:

(1) SMr = {sr1, sr2 , …, srk} ⊆ SπM consists of a set of states, where SπM denotes the set of
states contained in πM;

(2) ∀(s, a) ∈ πM, s ∉ SMr → |A(s)| = 1, where A(s) is the set of actions applicable to state s.
That is, if s is not in SMr, then it has exactly one applicable action.

Intuitively, before a MRDAG is expanded, its rootset SMr includes all non-goal leaf states
in Gπ(s0). For convenience, we will say that a state s belongs to M if s ∈SπM.

Definition 6. A state s is called an outsider of a MRDAG M = {SMr, πM} if there exists
(s′, a′) ∈ πM such that s ∈ γ (s′, a′) and one of the following two conditions is satisfied:

(1) s is a goal;
(2) s is not a goal, |A(s)| > 1 and s does not belong to M or any of M’s ancestry MRDAGs

(i.e., MRDAGs constructed prior to M).

Definition 6 implies that the outsiders of a MRDAG M are not part of M. These outsiders
represent the set of all leaf states generated by M in Gπ(s0).

Definition 7. A MRDAG Mc rooted at SMcr is a child of MRDAG Mp if SMcr is the set of
all non-goal outsiders of Mp. Mp is called the parent of Mc.

Definition 7 implies that a MRDAG can have at most one child MRDAG. Definition 6
and Definition 7 together imply the following property for MRDAG expansion.

Property (MRDAG Expansion). Given a MRDAG M = {SMr, πM}, if (1) there exists a
state s′ that does not appear in M ’s ancestry MRDAGs; (2) |A(s′)| = 1; and (3) there exists
(s, a) ∈ πM such that s′ ∈ γ (s, a), then (s′, a′) ∈ πM, where a′ is the only applicable action
of s′.

Definition 8. A MRDAG M = {SMr, πM} is feasible if the following three conditions are
satisfied:

(1) ∀(s, a) ∈ πM, applying a to s does not lead to a cycle in Gπ (s0);
(2) ∀(s, a) ∈ πM, applying a to s does not lead to a dead-end; and
(3) the child of M, if any, is also feasible.

Definition 9. A set of states SMr = {sr1, sr2 , …, srk} is called a feasible rootset if a feasible
MRDAG rooted at SMr can be created.

1460028-5

In
t.

J.
 A

rt
if

. I
nt

el
l.

T
oo

ls
 2

01
4.

23
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 D

r.
 J

ic
he

ng
 F

u
on

 0
1/

05
/1

5.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

Definition 10. A strong solution is π = πM1 ∪ πM2 ∪ … ∪ πMn, where πM1, πM2 , …, πMn
are the policies of a sequence of feasible MRDAGs M1, M2 , …, Mn, if the following three
conditions are satisfied:
(1) M1 is rooted at s0, i.e., the initial state;
(2) Mi is the parent of Mi+1 for i = 1, 2, 3, …, n – 1; and
(3) all the outsiders of Mn are goal states.

4. Strong Planning Algorithm

4.1. Algorithm outline

Figure 2 outlines our strong planning algorithm. In line 1, the rootset R of the first MRDAG
is initialized to be the initial state s0 of the planning problem 〈s0, g, ∑〉. The policy π,
which stores the union of the policies of the MRDAGs constructed up to this point, is
initialized to be an empty set. While R is not empty (line 2), the function GET-NEXT-
SET-OF-ACTIONS assigns an applicable action to each state in R, and the resulting state-
action pairs are inserted into πM, the policy associated with the current MRDAG (line 3).
Note that GET-NEXT-SET-OF-ACTIONS enumerates all possible combinations of
actions applicable to the states in R, and returns a different combination of actions for the
same rootset every time it is invoked. For example, assume that there are two states in R,
namely, sr1 and sr2. If |A(sr1)| = 2 and |A(sr2)| = 3, then there are 6 possible combinations for

Fig. 2. Outline of the strong planning algorithm.

 Global Variables: π, 〈s0, g, Σ〉
 Function STRONG_PLANNING
1. R ← {s0}; π ← φ /*R is the rootset of the MRDAG*/
2. while R ≠ φ do
3. πM ← GET-NEXT-SET-OF-ACTIONS(R)
4. if πM = φ then
5. if R = {s0} then return FAILURE else
6. BACKTRACK(R)
7. endif
8. else
9. if BUILD-MRDAG(πM) <> FAILURE then
10. π ← π ∪ πM
11. if All-GOAL-OUTSIDERS(R, πM) then
12. return π
13. else
14. R ← GET-OUTSIDERS(R, πM)
15. endif
16. endif
17. endif
18. endwhile

1460028-6

A. C. Jaramillo et al.

In
t.

J.
 A

rt
if

. I
nt

el
l.

T
oo

ls
 2

01
4.

23
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 D

r.
 J

ic
he

ng
 F

u
on

 0
1/

05
/1

5.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

Fig. 3. Algorithm for building a feasible MRDAG.

creating πM. Each time GET-NEXT-SET-OF-ACTIONS returns one combination to πM
(line 3). If all the combinations have been exhausted (line 4), GET-NEXT-SET-OF-
ACTIONS will return an empty set, which means R is not a feasible rootset (see
Definition 9), i.e., no feasible MRDAG can be built from R. When this happens, the
algorithm will check whether R includes only s0 (line 5). If so, there is no solution to the
given planning problem. However, if R includes some states other than s0, backtrack will
occur (line 6). As no feasible MRDAGs can be built based on R, the MRDAG leading to R
(i.e., R’s parent MRDAG) is not feasible and should be discarded. Specifically, all state-
action pairs in the policy of R’s parent MRDAG are discarded (the policy π is updated
accordingly) and only its rootset is kept. Hence, the result of the backtrack is to assign the
parent’s rootset to R. Therefore, in the next iteration (line 3), GET-NEXT-SET-OF-
ACTIONS will assign a different set of actions to the states in R so that the algorithm will
seek an alternative solution by building a different MRDAG.

If GET-NEXT-SET-OF-ACTIONS returns a non-empty set (line 8), the algorithm
attempts to build a feasible MRDAG by invoking the function BUILD-MRDAG (line 9).
Figure 3 illustrates how to build a feasible MRDAG. If a feasible MRDAG is not found
(i.e., BUILD-MRDAG returns failure), the current iteration ends. In the next iteration
(line 3), GET-NEXT-SET-OF-ACTIONS will return a different set of actions to the states
in R.

On the other hand, if a feasible MRDAG can be built (i.e., BUILD-MRDAG returns
success), the algorithm adds the state-action pairs in πM to the solution policy π (line 10).
Then, it checks whether the outsiders of the current MRDAG are all goal states (line 11).
If so, a solution has been found (line 12) according to Definition 10. Otherwise, the set of
non-goal outsiders of the current MRDAG is assigned to R, which will be the rootset of the
child MRDAG (line 14). The algorithm then continues to the next iteration and attempts to
build a feasible child MRDAG based on the new rootset.

4.2. Building a feasible MRDAG

EXPAND-MRDAG is shown in Fig. 4. For each state s′ ∈ γ (s, a) that is not a goal state
(line 1), the algorithm checks whether s′ has already been assigned an action in π or πM
(line 2). If so, the algorithm uses Tarjan’s algorithm8 to check whether a cycle has been

Function BUILD-MRDAG (πM)
1. πroot ← πM

2. foreach (s, a) ∈ (πroot) do
3. if EXPAND-MRDAG(πM, s, a) = FAILURE then
4. return FAILURE
5. endif
6. endfor
7. return SUCCESS

1460028-7

 Fast Strong Planning for FOND Problems with MRDAGs

In
t.

J.
 A

rt
if

. I
nt

el
l.

T
oo

ls
 2

01
4.

23
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 D

r.
 J

ic
he

ng
 F

u
on

 0
1/

05
/1

5.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

A. C. Jaramillo et al.

Fig. 4. Helper function for building a feasible MRDAG.

formed in the graph represented by the union of π and πM as a result of applying a to s
(line 3).a If a cycle is detected, the use of action a violates the acyclic property of MRDAG
(see Definition 8), and the algorithm returns FAILURE (line 4 in Figure 4). Otherwise, the
use of a is safe. Since s′ has been already assigned an action, there is no need to expand it.

If s′ has not been assigned any action, the algorithm checks the number of actions
applicable to s′. If there is only one applicable action (line 6), it should belong to the current
MRDAG (see Definition 5 and Property (MRDAG expansion)). Hence, the algorithm
includes s′ in the current MRDAG (line 7) and then recursively expands s′ (lines 8–10). On
the other hand, if s′ has no applicable actions (line 11), it is a dead-end and a failure has
been detected (line 12), since a feasible MRDAG should not lead to any dead-end (see
Definition 8). Note that the algorithm does not handle the case where |A(s′)| > 1. The reason
is that s′ is an outsider of the current MRDAG because it has more than one applicable
action (see Definition 6).

4.3. An illustrative example

To better understand our strong planning algorithm, we apply it to the following simplified
blocksworld problem (see Fig. 5), which will serve as our running example. In this
problem, three actions are possible: the deterministic action put-down(X) and two
nondeterministic actions, pick-up(X, Y) and put-on(X, Y). Here, X and Y are variables that
represent block A, B, or C. put-down(X) puts block X onto the table. The nondeterministic
action pick-up(X, Y) can pick up block X from the top of block Y. However, it may
possibly drop block X onto the table due to the mechanical constraint. The nondeterministic

a When detecting cycles, we need to take the union of π and πM because a cycle could be formed among the states
belonging to different MRDAGs.

Function EXPAND-MRDAG (πM, s, a)
1. foreach s′ ∈ γ (s, a) & NOT-GOAL(s′) do
2. if s′ ∈ Sπ or s′ ∈ SπM then
3. if DETECT-CYCLE(π ∪ πM) = TRUE then
4. return FAILURE
5. endif
6. elseif |A(s')| = 1 then
7. πM ← πM ∪ {(s', a′)} with a′ ∈ A(s')
8. if EXPAND-MRDAG (πM, s', a') = FAILURE then
9. return FAILURE
10. endif
11. elseif |A(s')| = 0 then /*dead-end*/
12. return FAILURE
13. endif
14. endfor
15. return SUCCESS

1460028-8

In
t.

J.
 A

rt
if

. I
nt

el
l.

T
oo

ls
 2

01
4.

23
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 D

r.
 J

ic
he

ng
 F

u
on

 0
1/

05
/1

5.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

Fig. 5. Blocksworld example.

action put-on(X, Y) can put the held block X onto block Y. Similarly, the held block X
may fall onto the table. The aim is to move the blocks so that goal g can be reached from
the initial state s0.

The algorithm begins by setting the rootset R of the first MRDAG to {s0} (line 1 in
Fig. 2). Next, it computes the policy πM based on R (line 3 in Fig. 2). Since pick-up(B, A)
is the only applicable action to s0, πM is set to {(s0, pick-up(B, A))}. Since πM is not
empty, the algorithm attempts to build a feasible MRDAG by invoking BUILD-MRDAG
(line 9 Fig. 2). Subsequently, BUILD-MRDAG invokes EXPAND-MRDAG to recursively
expand the MRDAG (line 3 in Fig. 3). Applying pick-up(B, A) to s0 results in two states
(line 1 in Fig. 4). One is the goal since block B may fall onto the table. The other is state s1
in Fig. 5, which is a state in which B is held. The goal state will be an outsider of the current
MRDAG (see Definition 6). Since s1 has three applicable actions, namely, put-down(B),
put-on(B, A), and put-on(B, C), it is also an outsider of the current MRDAG. Then, a new
MRDAG, M1, is created with πM1 = {(s0, pick-up(B, A))}, and s1 is the non-goal outsider.
The control of the algorithm returns to line 9 of Fig. 2. The solution π is updated to be π ←
π ∪ πM1 ={(s0, pick-up(B, A))} (line 10 of Fig. 2). Since state s1 is not a goal state and it is
an outsider of the current MRDAG, R = {s1} (line 14 in Fig. 2).

The algorithm begins the next iteration by selecting an applicable action for s1. Let us
assume that the algorithm selects put-on(B, C) (line 3 of Fig. 2). It then invokes BUILD-
MRDAG with the argument πM = {(s1, put-on(B, C))} (line 9 of Fig. 2). Subsequently,
BUILD-MRDAG invokes EXPAND-MRDAG to recursively expand the MRDAG (lines 1–
3 of Fig. 3). Applying put-on(B, C) to s1 also leads to two states, namely, (1) the goal state,
since B may fall onto the table, and (2) state s2, as shown in Fig. 5 (line 1 in Fig. 4). State
s2 has only one applicable action, i.e., pick-up(B, C). So the algorithm adds s2 to the current
MRDAG and recursively invokes EXPAND-MRDAG (lines 8–10 of Fig. 4). Now, πM =
{(s1, put-on(B, C)), (s2, pick-up(B, C))}. Applying pick-up(B, C) to s2 results in two states,
namely, the goal state and a previously explored state, i.e., s1. The handling of the goal
state is the same as above, so let us focus on state s1. The algorithm detects that s1 has been
assigned an action (line 2 of Fig. 4) and then finds that a cycle has been formed between s1
and s2 (line 3 of Fig. 4). Hence, EXPAND-MRDAG returns failure (line 4 in Fig. 4).
Subsequently, BUILD-MRDAG also returns failure (line 4 in Fig. 3). Hence, policy π =
(s0, pick-up(B, A)) is not updated. Then, the strong planning algorithm (Fig. 2) selects
another action, say put-down(B), for R = {s1}, and invokes BUILD-MRDAG (line 9 in

s2

s0

s1

g
A C
B

A C

B

A B C

C A
B

1460028-9

 Fast Strong Planning for FOND Problems with MRDAGs

In
t.

J.
 A

rt
if

. I
nt

el
l.

T
oo

ls
 2

01
4.

23
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 D

r.
 J

ic
he

ng
 F

u
on

 0
1/

05
/1

5.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

A. C. Jaramillo et al.

Fig. 2) with πM = {(s1, put-down(B))}. BUILD-MRDAG then invokes EXPAND-MRDAG.
As put-down(B) is a deterministic action, it only results in a single state, which is the goal
(line 1 of Fig. 4). The goal state is an outsider of the MRDAG. Since there are no other
states generated by put-down(B), the algorithm will return SUCCESS (line 15 in Fig. 4) to
BUILD-MRDAG and then to the strong planning algorithm in Fig. 2. The current MRDAG
M2 includes the policy πM = {(s1, put-down(B))}. Then, policy π is updated by π ← π ∪
πM, i.e., π = {(s0, pick-up(B, A))} ∪ {(s1, put-down(B))} = {(s0, pick-up(B, A)), (s1, put-
down(B))} (line 10 of Fig. 2). Since the outsiders of MRDAG M2 include only the goal
state, the algorithm terminates and returns the final policy π (lines 10–12 in Figure 2).

5. Heuristics

When using MRDAG to expand the solution space, we need to answer two questions. First,
which state in a given rootset should be expanded first if the rootset contains more than
one state? Second, which action applicable to a state in a rootset should be applied first if
the state contains more than one applicable action? We answer these questions by designing
two heuristics, as described below.

To answer the first question, assume that the rootset of a MRDAG is SMr = {sr1,
sr2, …, srk}. Using the most constrained state (MCS) heuristic, we sort the states in SMr in
increasing order of the number of actions applicable to a state. The MCS heuristic enables
a simple and efficient way to implement GET-NEXT-SET-OF-ACTIONS (line 3 of Fig. 2).
Specifically, assume that SMr = {sr1, sr2, …, srk} is sorted by means of the MCS heuristic.
For each state sri (1 ≤ i ≤ k) in SMr, let Ai = (ai1, ai2, …, ai〈mi〉) be the list of applicable actions
to sri and 〈mi〉 = |A(sri)| be the number of applicable actions. We assume that GET-NEXT-
SET-OF-ACTIONS retrieves the actions in Ai in a fixed order, i.e., ai1, ai2, …, ai〈mi〉. Then,
GET-NEXT-SET-OF-ACTIONS returns πM = {(sr1, a11), (sr2, a21), …, (srk, ak1)} first. If it
does not result in a feasible MRDAG, the function will try sr1’s next action a12 and
return {(sr1, a12), (sr2, a21), …, (srk, ak1)}, then {(sr1, a13), (sr2, a21), …, (srk, ak1)}, …, and
finally {(sr1, a1〈m1〉), (sr2, a21) ,…, (srk, ak1)}. If still no feasible MRDAG can be built, the
function will try sr2’s next action a22 and return {(sr1, a11), (sr2, a22), …, (srk, ak1)}. If this
combination does not lead to a feasible MRDAG, then the function will return {(sr1, a12),
(sr2, a22), …, (srk, ak1)}, {(sr1, a13), (sr2, a22), …, (srk, ak1)}, …, and finally {(sr1, a1〈m1〉), (sr2,
a2〈m2〉), …, (srk, ak〈mk〉)}. Here is the rationale behind the MCS heuristic: as sr1 has the least
number of applicable actions, GET-NEXT-SET-OF-ACTIONS can quickly enumerate its
applicable actions and then start to consider the rest of the states in sorted order.

To answer the second question, we use the least heuristic distance (LHD) heuristic.
For each state sri ∈ SMr = {sr1, sr2, …, srk} (1≤ i ≤ k), we sort its applicable actions in
increasing order of the heuristic distance to the goal. Specifically, applying an action a to
sri may result in a set of states. Among these resulting states, the one that yields the shortest
distance to the goal is used to define the heuristic distance of action a. In our
implementation, we used the same heuristic as FF,9 i.e., relaxed plans, to estimate the
heuristic distance. To break ties, actions with fewer effects are given higher priority. The
rationale is that if an action has fewer effects, it is less nondeterministic and hence contains

1460028-10

In
t.

J.
 A

rt
if

. I
nt

el
l.

T
oo

ls
 2

01
4.

23
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 D

r.
 J

ic
he

ng
 F

u
on

 0
1/

05
/1

5.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 Fast Strong Planning for FOND Problems with MRDAGs

fewer unintended effects. If a tie still exists, then it is broken arbitrarily. It should be easy
to see that MCS and LHD can be applied in combination.

Theorem 1. A MRDAG M = {SMr, πM} can be uniquely identified by SMr and the set of
actions applied to SMr, Ar.

Proof. According to Definition 5, except the states in SMr, all other states in M only have
a single applicable action. Hence, after applying Ar to SMr, the expansion of M has
no variations. If a generated state is not already in Sπ, then it either is an outsider of M
if it has more than one applicable action, or can continue to expand M by applying its
only applicable action. Therefore, with SMr and Ar, we cannot obtain two different
MRDAGs.

Theorem 2. The proposed strong planning algorithm in Figure 2 is sound and complete.

Proof. To prove soundness, assume that the algorithm returns a solution consisting of
a sequence of MRDAGs M1, M2, …, Mn, where Mi is the parent of Mi+1 for i = 1, 2, 3, …,
n – 1. Note that each MRDAG in the sequence is feasible, as our algorithm maintains the
feasibility of MRDAGs, i.e., there are no dead-ends (see lines 11 and 12 of Fig. 4) or cycles
(see lines 3 and 4 of Fig. 4) in the MRDAGs. In addition, the possible non-goal leaf states
can only exist in a MRDAG’s outsiders (see lines 6–13 of Fig. 4), which form the root of
its child. Hence, we only need to check the last MRDAG, Mn. The algorithm terminates
with success if and only if the outsiders of Mn are all goal states (lines 11 and 12 in Fig. 2).
Hence, no non-goal leaf states are possible in the solution, i.e., there is a path leading to
the goal from any non-goal state in the solution without going through any cycles.

Completeness can be proved by contradiction. Suppose that there is a solution to the
given planning problem but our planning algorithm terminates in failure. According to
Definition 10, we can represent the solution by a sequence of MRDAGs, M1, M2, …, and
Mn,. Here, Mi is the parent of Mi+1 for i = 1, 2, 3, …, n – 1 and M1’s rootset contains only
the initial state s0 of the planning problem. According to Theorem 1, M1 is determined by
{s0} and an action a. Our algorithm should be able to try action a because our algorithm
exhaustively tries all the possible combinations of actions applicable to the rootset to
expand a MRDAG. Hence, M1 will be created based on the root s0 and action a. By
induction, it will create M2, …, Mn, which is a solution to the planning problem. Hence, we
obtain a contradiction.

6. Pruning the Search Space

During the planning process, some state-action pairs always lead to cycles or dead-ends
and hence result in infeasible MRDAGs. If such state-action pairs are not marked up, the
planning algorithm may repeatedly try to use them to expand MRDAGs, which may
negatively impact efficiency. It is therefore desirable to permanently disable such state-
action pairs so that our planning algorithm will not attempt to use them to expand the search

1460028-11

In
t.

J.
 A

rt
if

. I
nt

el
l.

T
oo

ls
 2

01
4.

23
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 D

r.
 J

ic
he

ng
 F

u
on

 0
1/

05
/1

5.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

space. For our purpose, disabling a state-action pair (s, a) amounts to modifying the state-
transition function γ in Definition 1, i.e., making action a inapplicable to state s. Note that
when disabling some state-action pairs, we need to ensure that the resulting planning
problem is strongly-equivalent to the original planning problem as defined in Definition 11.

Definition 11. A planning problem 〈s0′, g′, ∑′〉 is strongly-equivalent to problem 〈s0, g, ∑〉
if s0′ = s0, g′ = g, and the set of strong solutions for 〈s0′, g′, ∑′〉 is equal to the set of strong
solutions for 〈s0, g, ∑〉.

Theorem 3. Our planning algorithm remains sound and complete if the resulting planning
problem is strongly-equivalent to the original planning problem by disabling some state-
action pairs.

Proof. The definition of MRDAG and its expansion property ensure that if a solution is
found, it will be connected, acyclic, and dead-end free. Hence, soundness is maintained. In
addition, since the resulting planning problem is strongly-equivalent to the original
planning problem, only those state-action pairs that are irrelevant to strong solutions are
disabled. Hence, the expansion of MRDAGs will be the same as it does for the original
planning problem except that the expansion is conducted in a smaller, pruned search space.
Hence, completeness is maintained.

To prune the search space, we modify our algorithm to allow state-action pairs to be
disabled in the function EXPAND-MRDAG before it returns FAILURE (see Fig. 4). We
employ two constraints for disabling state-action pairs:

(1) We only disable state-action pairs that belong to the current MRDAG under expansion.
This is to ensure that state-action pairs in the ancestry MRDAGs are not affected.

(2) The resulting planning problem 〈s0, g, ∑′〉 must be strongly-equivalent to the original
planning problem 〈s0, g, ∑〉, where ∑′ is the same as domain ∑ except that the state-
transition function is modified to account for the disabled state-action pairs.

Given the above discussion, we propose five optimizations that can help prune the
search space.

Optimization 1. Suppose that a MRDAG M = {SMr, πM} is currently under expansion.
During the execution of EXPAND-MRDAG (see Fig. 4), a dead-end s is found (see line 11
in Fig. 4). Let Sps = {sp | s ∈ γ (sp, πM (sp))} be the set of parent states of s under the current
policy πM for the MRDAG M. For each sp in Sps, we permanently disable the state-action
pair (sp, πM (sp)). Then, for each sp, we recursively apply the above procedure until it reaches
a state sr in the rootset SMr such that (sr, πM (sr)) is also disabled.

Theorem 4. Our planning algorithm remains sound and complete with Optimization 1.

Proof. Optimization 1 only disables state-action pairs that lead to a dead-end. Since no
strong solutions can include dead-ends, the planning problem that resulted from disabling

1460028-12

A. C. Jaramillo et al.

In
t.

J.
 A

rt
if

. I
nt

el
l.

T
oo

ls
 2

01
4.

23
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 D

r.
 J

ic
he

ng
 F

u
on

 0
1/

05
/1

5.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

such state-action pairs is strongly-equivalent to the original planning problem. According
to Theorem 3, our planning algorithm is sound and complete.

Optimization 2. Suppose that a MRDAG M = {SMr, πM} is currently under expansion.
During the execution of EXPAND-MRDAG (see Fig. 4), if the addition of a state-action
pair (s, a) would create a cycle consisting of states that are not part of any rootsets, then we
can treat s as a dead-end and apply the procedure specified in Optimization 1.

Theorem 5. Our planning algorithm remains sound and complete with Optimization 2.

Proof. Without loss of generality, Fig. 6 illustrates a dead-end cycle discussed in
Optimization 2. The rootset consists of states sr1, sr2, …, srk. Applying action a to state s
creates a cycle in which no states belong to any rootsets. According to Definition 5, states
that are not in the rootset only have one applicable action. Hence, all the states involved in
the cycle have only one applicable action. It implies that these states will inevitably get
involved in the cycle since they do not have other actions leading to other paths. Hence,
any states on the cycle cannot be in any strong solution to the original planning problem.
Therefore, the planning problem that resulted from the use of Optimization 2 is strongly-
equivalent to the original planning problem. Hence, according to Theorem 3, our planning
algorithm is sound and complete.

Fig. 6. Illustration of Optimization 2.

Optimization 3. Suppose that a MRDAG M = {SMr, πM} is currently under expansion.
During the execution of EXPAND-MRDAG (see Fig. 4), if the addition of a state-action
pair (s, a) forms a cycle in which only one of its states sr belongs to a rootset, then we can
permanently disable the state-action pair (sr, πM(sr)).

Theorem 6. Our planning algorithm remains sound and complete with Optimization 3.

Proof. Without loss of generality, Fig. 7 shows the situation specified in Optimization 3.
State sr is the only state that belongs to a rootset. In fact, state sr must belong to the rootset
of the MRDAG currently being expanded, i.e., M = {SMr, πM}. Otherwise, suppose that
state sr belongs to a rootset in an ancestry MRDAG M′. The MRDAG expansion property
specifies that the expansion of M′ stops when it reaches the rootset of its child MRDAG. It

… …
…

…

…

sr1

sr2

srk

s

a

1460028-13

 Fast Strong Planning for FOND Problems with MRDAGs

In
t.

J.
 A

rt
if

. I
nt

el
l.

T
oo

ls
 2

01
4.

23
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 D

r.
 J

ic
he

ng
 F

u
on

 0
1/

05
/1

5.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

A. C. Jaramillo et al.

Fig. 7. Illustration of Optimization 3.

implies that the portion of the cycle that belongs to M′ will lead to a state in its child
MRDAG’s rootset. Hence, it contradicts the condition that there is only one state in the
cycle belonging to a rootset.

In addition, all other states in the cycle only have a single applicable action as they do
not belong to any rootsets (see Definition 5). This implies that after applying action πM(sr)
to sr, the further expansion will inevitably form the cycle as the rest of the states on the
cycle only have one applicable action. Hence, (sr, πM (sr)) cannot be part of any strong
solution to the original planning problem. The planning problem that resulted from
disabling (sr, πM (sr)) is strongly-equivalent to the original planning problem. According to
Theorem 3, our planning algorithm is sound and complete.

Optimization 4. Suppose that a MRDAG M = {SMr, πM} is currently under expansion.
During the execution of EXPAND-MRDAG, it is found that the addition of a state-action
pair (s, a) forms a cycle. Furthermore, this cycle contains more than one state belonging
to some rootsets. Among such states, exactly one state sr belongs to the rootset of the
current MRDAG M. Then, we can temporarily disable the action ar currently assigned to sr
in πM. Temporarily disabling (sr, ar) means that GET-NEXT-SET-OF-ACTIONS (see line 3
in Fig. 2) will not assign action ar to state sr again. Later, if backtracking occurs (line 6 in
Fig. 2), the state-action pair (sr, ar) is re-enabled.

Theorem 7. Our planning algorithm remains sound and complete with Optimization 4.

Proof. Without loss of generality, Fig. 8 illustrates a situation specified in Optimization 4.
In Fig. 8, the solid dots represent the states in the rootsets. We show that whenever the
state-action pair (sr, ar) is applied, a cycle will be formed. Note that when expanding the
current MRDAG M = {SMr, πM} by applying action ar to state sr, the rest of the expansion
inside MRDAG M only includes states with one applicable action. Hence, there are no
variations. Then, a state transition leads the cycle to another state sr′ in the rootset of
MRDAG M′ = {SMr′, πM′ }. Since the policy πM′ remains unchanged when MRDAG M
expands (see Constraint 1 discussed previously), the portion of the cycle belonging to M′
remains unchanged. Hence, the cycle will be formed whenever the state-action pair (sr, ar)
is applied. Temporally disabling (sr, ar) can avoid forming the cycle. Note that it is possible
that it is the state sr′ that chooses a wrong action, which in turn leads to this cycle. Hence,
it is unsafe to permanently disable (sr, ar).

… …
…

…

…

sr

s

1460028-14

In
t.

J.
 A

rt
if

. I
nt

el
l.

T
oo

ls
 2

01
4.

23
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 D

r.
 J

ic
he

ng
 F

u
on

 0
1/

05
/1

5.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 Fast Strong Planning for FOND Problems with MRDAGs

Fig. 8. Illustration of Optimization 4.

Optimization 5. If a state-action pair (s, a) leads to a self-loop (one-state cycle), it is safe
to permanently disable (s, a).

Proof. Without loss of generality, Fig. 9 illustrates an example of a self-loop. Obviously,
such a state-action pair violates the property of strong solutions and will not be included in
any strong solutions to the original planning problem. Hence, the planning problem
resulted from disabling (s, a) is strongly-equivalent to the original planning problem.
According to Theorem 3, our planning algorithm is sound and complete.

Fig. 9. Illustration of Optimization 5.

7. Evaluation

To ensure fairness in our experiments, we used the benchmark planning domains from the
IPC 2008 FOND track.6 Since no problem in IPC 2008 has strong solutions, we created
problems with strong solutions by revising four benchmark domains in the FOND track,
namely, faults [ft], tireworld [tw], blocksworld [bw], and first-responders [fr]. In addition,
to test how fast a strong algorithm can detect that no strong solutions exist, we also used
the strong cyclic blocksworld domain [scbw].

We revised the four aforementioned benchmark domains so that they contain strong
solutions to planning problems as follows.

Faults: the goal is to complete a set of operations. We relax the requirements to allow
operations to complete even with faults. With this relaxation, it is possible to generate
strong solutions with problem instances p_x_x, where the first x represents the number of
operations and the second x represents the maximum number of allowable faults.

Tireworld: the goal is to drive a car from the initial location to the goal location through
a series of intermediate stops. Of the three possible actions, move-car and change-tire are

s a

1460028-15

In
t.

J.
 A

rt
if

. I
nt

el
l.

T
oo

ls
 2

01
4.

23
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 D

r.
 J

ic
he

ng
 F

u
on

 0
1/

05
/1

5.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

A. C. Jaramillo et al.

nondeterministic. Move-car may or may not have a flat tire when moving from one location
to another. Change-tire may or may not change the tire successfully. The original tireworld
domain only has strong cyclic solutions because change-tire, if failed, will do nothing. We
modified change-tire so that it is deterministic (i.e., no failure is possible), keeping
everything else unchanged.

Blocksworld: We enhanced blocksworld by combining it with the faults domain. The
pick-up action may become faulty and need a repair. The goal condition of each problem
is the configuration where all the blocks are on the table. Solving the enhanced blocksworld
problems is by no means trivial: Gamer can only solve 10 out of 30 problems while MBP
can solve none.

First-responders: We revised the first-responders domain by changing three non-
deterministic actions. In the original domain, the fire may or may not be put out by unloading
the fire unit. In addition, victims hurt by fire can be treated on the scene at a fire unit or a
medical unit. The treat action either heals the victims or does nothing. We change the
“unload-fire-unit” action to be deterministic, i.e., fire can always be put out. We change the
two “treat-victim-on-scene” actions to generate the effects of healing the victim or the victim
becoming dying. In the latter case, the victim must be sent to the hospital using a vehicle.

7.1. Planners

We use MBP and Gamer as baselines. In addition, to determine the contributions made by
the two heuristics and five optimizations, we evaluate ten versions of our planners: SP uses
both heuristics and all five optimizations, NHO uses none of the heuristics or optimizations,
MCS uses only the MCS heuristic without any optimizations, LHD uses only the LHD
heuristic without any optimizations, BHU uses both heuristics without any optimizations,
OP1 uses optimization 1 with both heuristics, OP2 uses optimization 2 with both heuristics,
and so do for OP3, OP4, and OP5. In NHO and LHD, the states in the rootset of a MRDAG
are expanded in the order in which they are added to the rootset when BUILD-MRDAG or
EXPAND-MRDAG is called. In MCS and NHO, if a state has more than one applicable
action, one of the actions will be randomly picked to expand the MRDAG. The reason that
OP1 to OP5 utilize both heuristics is that the heuristics attempt to minimize the use of
randomness and hence the experimental results are repeatable. As a result, the comparison
results will be more reliable in reflecting the effectiveness of the optimizations.

7.2. Problem coverage

Problem coverage refers to the sum of the number of problems that a planner can solve and
the number of problems for which it can detect the non-existence of strong solutions on a
particular domain. We set a cutoff time, 1200 seconds, to prevent a planner from running
indefinitely when attempting to solve a planning problem. Table 1 shows the experimental
results on problem coverage. Note that these results were obtained using a desktop
computer with Intel Pentium-4 CPU 3GHz and 1 GB memory. As we can see, when no
heuristics or optimizations were employed, the planner NHO performed slightly better than
MBP but worse than Gamer. When the heuristic MCS was used, the planner MCS solved

1460028-16

In
t.

J.
 A

rt
if

. I
nt

el
l.

T
oo

ls
 2

01
4.

23
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 D

r.
 J

ic
he

ng
 F

u
on

 0
1/

05
/1

5.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

slightly more problems than NHO. In comparison, the use of heuristic LHD significantly
improved planning performance, i.e. the planner LHD significantly outperformed Gamer
and MBP. Besides, the other seven versions of our planner also demonstrated outstanding
scalability by solving a significantly larger number of problems than Gamer and MBP.
Specifically, when all the heuristics and optimizations were used, the planner, SP, achieved
the highest problem coverage, followed by OP4 and OP5. The planner BHU had the same
problem coverage as LHD, which suggests that the heuristic LHD played a more critical
role than MCS. The use of Optimizations 4 and 5 further improved the problem coverage.

Table 1. Problem coverage.

Domain Gamer MBP SP NHO MCS LHD BHU OP1 OP2 OP3 OP4 OP5

scbw (30) 10 10 29 10 10 10 10 10 10 10 10 14

bw (30) 10 0 30 4 7 30 30 30 30 30 30 30

ft (10) 6 4 10 3 3 10 10 10 10 10 10 10

tw (14) 13 0 14 2 2 14 14 14 14 14 14 14

fr (75) 43 12 73 40 40 65 65 65 66 65 73 67

Total (159) 82 26 156 59 62 129 129 129 130 129 137 135

7.3. CPU time and plan size

Besides the problem coverage, we also evaluated the planners with respect to CPU time
and plan size. The CPU time refers to the time required by a planner to find a strong
solution (if one exists) or report that a strong solution does not exist. Note that to ensure a
fair comparison, we only compare the pure search time, as the preprocessing time of Gamer
and MBP is lengthy. Table 2 shows the evaluation results on CPU time measured in
seconds. Only the difficult problems (i.e., problems for which at least one planner timed
out or took > 50 seconds to find a solution) are listed. “--” indicates that the planner timed
out on that problem. As randomness is involved in our planners, we ran each problem three
times and calculated average results. If a planner failed to find a solution on any of the
three trials, we marked it as “--”.

Experimental results indicated that Gamer performed much better than MBP on all the
domains. Nevertheless, our SP planner performed significantly better than Gamer. On
average, SP was about four orders of magnitude faster than Gamer on strong blocksworld
and tireworld, about three orders of magnitude faster than Gamer on faults and first-
responders, and two orders of magnitude faster on strong cyclic blocksworld. When
comparing the two heuristics, LHD is on average four orders of magnitude faster on faults
and three orders of magnitude faster on first-responders than MCS. On the other hand,
MCS is about eight times faster than LHD on strong blocksworld domain and two times
faster on strong cyclic blocksworld domain. For the optimizations, OP5 performed the best
on the strong blocksworld domain, OP1 performed the best on the tireworld domain, and
OP4 performed the best on the first-responders and strong cyclic blocksworld domains. In
addition, the five optimization planners achieved similar performance on the faults domain.

1460028-17

 Fast Strong Planning for FOND Problems with MRDAGs

In
t.

J.
 A

rt
if

. I
nt

el
l.

T
oo

ls
 2

01
4.

23
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 D

r.
 J

ic
he

ng
 F

u
on

 0
1/

05
/1

5.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

b M
B

P
of

te
n

ou
tp

ut
s

to
o

m
uc

h
in

fo
rm

at
io

n
to

 c
ou

nt
 p

ol
ic

y
si

ze
.

T
ab

le
 2

.
 C

PU
 ti

m
e

co
m

pa
ri

so
n.

1460028-18

A. C. Jaramillo et al.

In
t.

J.
 A

rt
if

. I
nt

el
l.

T
oo

ls
 2

01
4.

23
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 D

r.
 J

ic
he

ng
 F

u
on

 0
1/

05
/1

5.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

Table 3. Plan size comparison.

Problem Gamer SP NHO MCS LHD BHU OP1 OP2 OP3 OP4 OP5

bw-1 21 21 -- 40 21 21 21 21 21 21 21

bw-2 14 14 29 26 14 14 14 14 14 14 14

bw-3 21 21 -- 33 21 21 21 21 21 21 21

bw-5 21 21 26 30 21 21 21 21 21 21 21

bw-6 14 14 28 37 14 14 14 14 14 14 14

bw-7 28 28 -- 48 28 28 28 28 28 28 28

bw-8 28 28 37 -- 28 28 28 28 28 28 28

bw-9 28 28 -- -- 28 28 28 28 28 28 28

bw-10 21 21 -- 30 21 21 21 21 21 21 21

bw-20 -- 40 -- -- 40 40 40 40 40 40 40

bw-30 -- 65 -- -- 65 65 65 65 65 65 65

ft-6-6 127 127 -- -- 127 127 127 127 127 127 127

ft-8-8 -- 511 -- -- 511 511 511 511 511 511 511

ft-9-9 -- 1023 -- -- 1023 1023 1023 1023 1023 1023 1023

ft-10-10 -- 2047 -- -- 2047 2047 2047 2047 2047 2047 2047

tw-10 1 1 -- -- 1 1 1 1 1 1 1

tw-11 5 5 -- -- 5 5 5 5 5 5 5

tw-12 1 1 -- -- 1 1 1 1 1 1 1

tw-14 21 24 -- -- 26 37 26 32 34 26 37

fr-1-8 10 10 -- 226 10 10 10 10 10 10 10

fr-1-9 11 11 -- -- 11 11 11 11 11 11 11

fr-1-10 12 12 -- -- 12 12 12 12 12 12 12

fr-10-1 3 3 365 309 3 3 3 3 3 3 3

fr-10-2 -- 11 441 87 17 8 10 9 14 9 9

The plan size is associated with the quality of the plans: the smaller the better. Table 3
shows the evaluation results on plan size. SP generated plans with the same size as Gamer
on the blocksworld and faults domains. Its plan sizes were also comparable to those
generated by Gamer on the tireworld and first-responders domains. On average, it was 1.02
times larger on the tireworld domain and 1.16 times larger on the first-responders domain.
In terms of the contributions made by the two heuristics, MCS generated plans with size 2
to 20 times larger than LHD. For the ten versions of our planners, LHD got involved in
eight. All eight planners had plan size similar to those of SP. Hence, we can conclude that
MCS does not contribute as significantly as LHD to planning performance. In other words,
the order in which the states within the rootset of a MRDAG are expanded does not seem
to make a big difference in performance.

7.4. Discussion

It is not difficult to see that if we remove the constraints that enforce the acyclicity of
MRDAG and ensure that no dead-end cycles exist, our planning algorithm will be able to
search for strong cyclic solutions if strong solutions do not exist. In fact, the ability to
quickly determine the non-existence of strong solutions is important. The planner can be
configured to look for strong solutions first, and if it detects that no strong solution exists,

1460028-19

 Fast Strong Planning for FOND Problems with MRDAGs

In
t.

J.
 A

rt
if

. I
nt

el
l.

T
oo

ls
 2

01
4.

23
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 D

r.
 J

ic
he

ng
 F

u
on

 0
1/

05
/1

5.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

it will search for strong cyclic solutions. Our experimental results on the strong cyclic
blocksworld domain showed that our strong planning algorithm could quickly determine
the non-existence of strong solutions. In contrast, Gamer and MBP could only determine
the non-existence of strong solutions for the first 10 planning problems within the cutoff
time. As the discussion of strong cyclic planning is beyond the scope of this paper, we
make our planner as well as the experimental results on strong cyclic planning publicly
available (see http://cs2.uco.edu/~fu/research/MRDAG for details) so that interested
researchers can benefit from our algorithm.

8. Conclusion

In this paper, we presented a strong algorithm for FOND planning problems based on a
novel data structure, MRDAG (multi-root directed acyclic graph). A MRDAG defines how
the solution space is expanded while maintaining acyclicity throughout the planning
process. We equip a MRDAG with two heuristics, MCS and LHD, which define

(1) the order in which the actions applicable to a state are chosen and
(2) the order in which the states in the rootset of a MRDAG are expanded.

To further improve planning efficiency, we prune the search space by using five
optimizations. We conducted extensive experiments to evaluate the contributions made
by the heuristics and optimizations. Experimental results on four domains showed that
(1) the use of MRDAG indeed made cycle handling easier and more efficient; (2) the
use of the LHD heuristic significantly improved planning performance; and (3) different
optimizations are suitable under different situations, and when all the heuristics and
optimizations were combined together, our planning algorithm achieved the best per-
formance. Most importantly, our planner significantly outperformed two state-of-the-art
planners, Gamer and MBP: on average it ran more than three orders of magnitude faster
than Gamer and MBP and solved a significantly larger number of problems.

Acknowledgments

This work was supported by the Oklahoma Center for the Advancement of Science and
Technology (OCAST HR12-036).

References

1. U. Kuter et al., Using classical planners to solve nondeterministic planning problems, in 18th Int.
Conf. on Automated Planning and Scheduling (ICAPS) (2008).

2. J. Fu et al., Simple and fast strong cyclic planning for fully-observable nondeterministic planning
problems, in Proc. of the 22nd Int. Joint Conf. on Artificial Intelligence, Vol. 3 (AAAI Press:
Barcelona, Catalonia, Spain, 2011), pp. 1949–1954.

3. A. Cimatti et al., Weak, strong, and strong cyclic planning via symbolic model checking, Artif.
Intell. 147(1–2) (2003) 35–84.

4. P. Kissmann and S. Edelkamp, Solving fully-observable non-deterministic planning problems via
translation into a general game, in KI 2009: Advances in Artificial Intelligence, B. Mertsching,
M. Hund and Z. Aziz (eds.) (Springer Berlin Heidelberg, 2009), pp. 1–8.

1460028-20

A. C. Jaramillo et al.

In
t.

J.
 A

rt
if

. I
nt

el
l.

T
oo

ls
 2

01
4.

23
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 D

r.
 J

ic
he

ng
 F

u
on

 0
1/

05
/1

5.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

5. C. J. Muise, S. A. McIlraith and J. C. Beck, Improved non-deterministic planning by exploiting
state relevance, in ICAPS, L. McCluskey et al. (eds.) (AAAI, 2012).

6. D. Bryce and O. Buffet, International planning competition uncertainty part: Benchmarks and
results, in Proc. of Int. Planning Competition (2008).

7. D. Bryce and O. Buffet, 6th international planning competition: Uncertainty part, in Proc. of Int.
Planning Competition (2008).

8. R. Tarjan, Switching and automata theory, in 12th Ann. Symp. on Depth-First Search and Linear
Graph Algorithms (1971).

9. J. Hoffmann and B. Nebel, The FF planning system: Fast plan generation through heuristic
search, Journal of Artificial Intelligence Research 14 (2001) 253–302.

1460028-21

 Fast Strong Planning for FOND Problems with MRDAGs

In
t.

J.
 A

rt
if

. I
nt

el
l.

T
oo

ls
 2

01
4.

23
. D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 D

r.
 J

ic
he

ng
 F

u
on

 0
1/

05
/1

5.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

	1. Introduction
	2. Nondeterministic Planning
	3. Multi-Root Directed Acyclic Graph (MRDAG)
	4. Strong Planning Algorithm
	4.1. Algorithm outline
	4.2. Building a feasible MRDAG
	4.3. An illustrative example

	5. Heuristics
	6. Pruning the Search Space
	7. Evaluation
	7.1. Planners
	7.2. Problem coverage
	7.3. CPU time and plan size
	7.4. Discussion

	8. Conclusion
	Acknowledgments
	References
	3.pdf
	2. Nondeterministic Planning

	6.pdf
	4. Strong Planning Algorithm
	4.1. Algorithm outline

	3.pdf
	2. Nondeterministic Planning

	6.pdf
	4. Strong Planning Algorithm
	4.1. Algorithm outline

	6-7.pdf
	3. Multi-Root Directed Acyclic Graph (MRDAG)

	S0218213014600288.pdf
	3. Multi-Root Directed Acyclic Graph (MRDAG)

	28-16.pdf
	7.1. Planners
	7.2. Problem coverage

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.440 841.680]
>> setpagedevice

