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Abstract— People with spinal cord injury (SCI) are at risk for 
pressure ulcers because of their poor motor function and 
consequent prolonged sitting in wheelchairs. The current 
clinical practice typically uses the wheelchair tilt and recline to 
attain specific seating angles (sitting postures) to reduce seating 
pressure in order to prevent pressure ulcers. The rationale is to 
allow the development of reactive hyperemia to re-perfuse the 
ischemic tissues. However, our study reveals that a particular 
tilt and recline setting may result in a significant increase of 
skin perfusion for one person with SCI, but may cause neutral 
or even negative effect on another person. Therefore, an 
individualized guidance on wheelchair tilt and recline usage is 
desirable in people with various levels of SCI. In this study, we 
intend to demonstrate the feasibility of using machine-learning 
techniques to classify and predict favorable wheelchair tilt and 
recline settings for individual wheelchair users with SCI. 
Specifically, we use artificial neural networks (ANNs) to 
classify whether a given tilt and recline setting would cause a 
positive, neutral, or negative skin perfusion response. The 
challenge, however, is that ANN is prone to overfitting, a 
situation in which ANN can perfectly classify the existing data 
while cannot correctly classify new (unseen) data. We 
investigate using the genetic algorithm (GA) to train ANN to
reduce the chance of converging on local optima and improve 
the generalization capability of classifying unseen data. Our 
experimental results indicate that the GA-based ANN 
significantly improves the generalization ability and 
outperforms the traditional statistical approach and other 
commonly used classification techniques, such as BP-based 
ANN and support vector machine (SVM). To the best of our 
knowledge, there are no such intelligent systems available now. 
Our research fills in the gap in existing evidence. 
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I. INTRODUCTION

Pressure ulcer has been identified as the most common 
complication for people with spinal cord injury (SCI) [1, 2].
It significantly affects the quality of life and overall 
healthcare costs of wheelchair users with SCI. It is estimated 
that more than half of the people with SCI will develop at 
least one pressure ulcer in their lifetimes [3]. The estimated 
annual cost on the treatment of pressure ulcers in people with 

SCI amounts to approximately 1.4 billion dollars, accounting 
for 25% of the total cost of treating SCI [4]. 

The essential component of a pressure ulcer prevention 
program is to periodically reduce seating pressure [5]. 
During the pressure-relieving period, ischemic soft tissues 
will be able to restore blood flow to meet the metabolic 
needs of local cells. Inadequate pressure relief will cause 
irreversible damage in ischemic tissues. Clinically, the 
pressure relieving activities performed by wheelchair tilt (a 
change of seat angle orientation while maintaining the seat-
to-back angle) and recline (a change of the seat-to-back 
angle) is recommended for preventing sitting-induced 
pressure in individuals with SCI, especially in quadriplegia 
[6, 7]. The principle of wheelchair tilt and recline usage is 
based on the evidence that turning the patient every 2 hours 
results in a lower incidence of pressure ulcers [8]. The 
purpose of periodically performing wheelchair tilt and 
recline is to allow the development of reactive hyperemia to 
re-perfuse the ischemic tissues [9]. 

On the other hand, it is unclear at what angles the 
wheelchair tilt and recline usage would provide adequate 
pressure relief for enhancing skin blood flow. Typically, the 
current clinical practice provides uniform guidance to all 
wheelchair users with SCI. However, our study [10] 
indicates that the skin blood flow response to wheelchair tilt 
and recline usage varies largely from person to person with 
SCI. Therefore, it is desirable to develop an intelligent 
system that can provide individualized guidance on 
wheelchair tilt and recline usages. 

Artificial neural network (ANN) is a powerful 
computational model with many appealing properties, such 
as learning capability, adaptability, and ability to generalize 
[11]. In [10], we used the back-propagation algorithm (BP) 
[12] to train ANN to perform binary classification, i.e., the 
skin blood flow response to wheelchair tilt and recline 
settings is classified to be either positive (i.e., favorable for 
skin perfusion increase) or negative. The results show that 
ANN significantly outperforms the traditional classical 
approach in correctly classifying wheelchair tilt and recline 
settings. In the subsequent study, however, we realize that 
binary classification may increase chances of false positive 
and/or false negative predictions. The major reason is that 
skin perfusion may only marginally increase or decrease in 
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some cases. Factors, such as measurement precision, noise, 
operation issues, etc., may contribute to such kinds of 
marginal variations. Hence, it is inappropriate to classify 
such marginal cases to be either positive or negative. 

We propose to use ANN to perform ternary 
classification, i.e., classify the blood flow response to 
wheelchair tilt and recline settings into three classes, namely, 
positive, neutral, and negative. In this study, we first use the 
BP algorithm to train ANN. Although this approach perfectly 
classifies the existing skin perfusion data, it generalizes very 
poorly. In other words, BP-based ANN is prone to 
overfitting, in which ANN perfectly classifies the existing 
data but fails to classify new (i.e., unseen) data. 

To improve ANN’s generalization capability, we use the 
genetic algorithm (GA) [13] to train ANN to reduce chances 
of being stuck in a local optimum. GA is a population-based 
stochastic search approach that has been widely applied in 
various research areas. Our implementation of GA absorbs 
many techniques from existing research results [14, 15] to 
diversify the population and improve the solution quality. 
Our research results indicate that GA-based ANN 
significantly outperforms BP-based ANN, the traditional 
statistical approach, and other commonly used classification 
techniques, such as support vector machine (SVM), in 
generalization. 

To the best of our knowledge, this is the first study that 
aims to perform ternary classification so that individualized 
wheelchair tilt and recline guidance can be provided to 
people with SCI. The goal of this study is to demonstrate the 
feasibility of using machine-learning techniques to construct 
such an intelligent model. 

The rest of the paper is organized as follows. In Section 
II, we introduce background knowledge of ANN and GA. In 
Section III, we present the experiment that we performed to 
investigate skin perfusion response to wheelchair tilt and 
recline usages. In Section IV, we discuss approaches that 
perform binary classifications and related issues. In Section 
V, we present approaches for ternary classifications to 
overcome the issue of binary classification. Then, we show 
the experimental results of ternary classification in Section 
VI, present the discussion in Section VII, and conclude in 
Section VIII. 

II. BACKGROUND

In this section, we introduce the major techniques used in 
this study. 

A. Artificial Neural Network (ANN)
An ANN can be defined as a set of simple processing 

units (neurons) that communicate among themselves by 
sending signals. The signals travel through weighted 
connections between neurons. Upon receiving signals, these 
neurons accumulate the inputs and produce outputs 
according to their internal activation functions. The outputs 
can serve as inputs for other neurons, or can be a part of the 
network outputs [11]. More precisely, we use multilayer 
perceptron (MLP) [16], in which neurons are organized into 
ordered layers. Connections between neurons are allowed 
only between adjacent layers to accept inputs and send 

outputs. As shown in Figure 1, each circle represents a 
neuron. From left to right, the first layer is called the input 
layer, the second layer is called the hidden layer, and the 
third layer is called the output layer. 
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Figure 1. An Example of ANN 

The commonly used algorithm to train ANN is the back-
propagation algorithm (BP) [12]. Specifically, the output 
errors are measured by, 

E = ∑ ∑ (��
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where P is number of training data and S is the number of 
units in the output layer; ��

	 is the desired output value and 

�
	 is the actual output. The goal is to minimize E. To do so, 

the gradient descent rule is applied to E, i.e., �
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 for all 

weights wij such that the weights are adjusted in the 
descending gradient direction, which is shown as follows: 

wij = wij � �
�


����
   (2) 

where � > 0 is a constant representing the learning rate. The 
above calculation is repeatedly performed until the error E
drops to meet a stop criterion or a predefined iteration 
number has been reached. 

Nevertheless, the BP algorithm is prone to converge on 
local optima. As an alternative, the genetic algorithm (GA) 
[13] can be used to train ANN [11]. 

B. Genetic Algorithm (GA) 

 

1. Create the initial population of randomly generated 
chromosomes 

2. Perform selection on the population (selection operator). 
3. Perform crossover on the remaining chromosomes to 

produce child population (crossover operator). 
4. If the max generation has been exceeded, return the fittest 

chromosome. 
5. If any chromosome is greater than or equal to the minimum 

fitness threshold  
6.   return the chromosome 
7. Otherwise, return to step 2. 

Figure 2. Genetic Algorithm Outline 

Figure 2 illustrates the major steps of genetic algorithm 
(GA), which is a population-based stochastic optimization 
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search approach. GA begins with a randomly generated 
population (line 1). A fitness function is used to evaluate the 
population. Based on the fitness values, GA updates the 
population and searches for optimal solutions using 
randomization techniques inspired by natural evolution, such 
as mutation, selection, crossover, etc.  

III. EXPERIMENT

We performed a study to investigate skin blood flow 
response to wheelchair tilt and recline settings at the 
Biomechanics and Microcirculation Laboratory at the 
University of Oklahoma Health Sciences Center [17]. Eleven 
adult subjects with SCI were recruited to participate in the 
study. Two of the subjects were women and nine of the 
subjects were men. The mean standard deviation age was 
37.7 � 14.2 years and the duration of injury was 8.1 � 7.5 
years. Inclusion criteria included traumatic SCI at the level 
of C4 through T12, at least 6 months after spinal injury, and 
use of a wheelchair as a primary means of mobility. 

A. Instrument  
Laser Doppler flowmetry (LDF) (Periflux System 5001, 

Perimed, Sweden) was used to measure skin blood flow 
(mlLDF/min/100g tissue). Two thin and flexible probes 
(PR415 probe, Perimed) were used to measure skin blood 
flow over the skin on the right ischial tuberosity and spinal 
process of the sacrum (midline between two posterior 
superior iliac spines (PSIS)). Skin blood flow over the ischial 
tuberosity was the primary measurement and the sacral area 
was the reference for assessing wheelchair tilt and recline 
usage on lower back tissue viability. LDF provided 
noninvasive measurement of skin blood flow at a depth of 
about 1 mm via laser and fiber optics technology. A low 
power beam (1 mW) of solid-state diode laser (780 nm 
wavelength) was delivered to the skin. The blood flow signal 
was sampled at 20 Hz to fully characterize blood flow 
oscillations.

B. Factorial Study Design 
A repeated measures factorial design was performed to 

determine the effects of wheelchair tilt and recline settings 
on skin blood flow response to sitting-induced pressure. We 
compared skin blood flow response (i.e., skin perfusion) to 
common clinical recommendations of tilt and recline usage. 
The main factors include tilt angles at 15�, 25�, and 35� and 
recline angles at 100� and 120�. A combination of 3 tilt and 2 
recline angles resulted in 6 testing conditions. The order of 
the 6 testing conditions was randomly assigned to the 
subjects. Each condition started with a baseline period (i.e., 
sitting-induced ischemic period with no tilt and recline) for 5 
minutes, followed by the pressure relieving period for 
another 5 minutes. In addition, the subject assumed a sitting 
posture of 35 degree tilt and 120 degree recline for a duration 
of 5 minutes to restore blood flow supply to ischemic tissues 
between each conditions [18]. Each subject spent about 90 
minutes to complete the experimental protocol. 

The skin perfusion b0 was measured during the first 5-
minute, i.e., the ischemic period. Then, the skin perfusion b1
was measured during the next 5-minute which was the 

pressure reduction period. The skin perfusion increase was 
computed by the ratio as follows: 

� = b1 / b0   (3) 
A 5-minute tilt and recline position is sufficient for a full 
recovery of skin perfusion because a 5-minute sitting-
induced ischemia was used in this study. 

C. Attributes of Participants 
In [10], we studied 5 attributes of participants, including 

2 demographic attributes, namely, age and gender, and 3 
neurological attributes, namely, level of injury, duration of 
injury, and completeness. All these attributes are reported to 
be risk factors for pressure ulcers [2, 19]. We use the same 
set of attributes in this study because the main purpose is to 
demonstrate the feasibility of using machine-learning 
techniques to classify whether a given wheelchair tilt and 
recline setting is favorable for a wheelchair user with SCI. 
We will address the issue of identifying attributes relevant to 
skin perfusion in our future study. 

IV. BINARY CLASSIFICATION

In [17], we used the average skin perfusion �̅ in each tilt 
and recline setting to classify the skin perfusion data in the 
same setting. Specifically, if �̅ > 1, then we classify all the 
data in that setting to be positive. Otherwise, we classify data 
to be negative. The advantage of this approach is its 
simplicity. We did find a pattern from the average skin 
perfusion �̅: as the angles of tilt and recline increase, the 
average skin perfusion �̅ also increases. The disadvantage is, 
however, the classification accuracy is low -- only 59.38%. 

To improve the classification accuracy, we used artificial 
neural network (ANN) to classify skin perfusion data based 
on the 5-attributes above [10]. As shown in Table I, two 
experiments were performed to evaluate the classification 
and generalization ability of the learned model. “Train and 
test with the same set” means that we trained and tested 
ANN with the same set of data. ANN classified almost all 
the data correctly. However, with a small data set, overfitting 
can easily happen. The 10-fold cross-validation is a 
commonly used approach to mitigate the overfitting impact 
[20]. 10-fold cross-validation randomly divides the training 
data into 10 equal and mutually exclusive sets (folds). Each 
time, the approach chooses one fold to be testing data and 
combines the other 9 folds as training data. Therefore, ANN 
is always tested with unseen data. The results obtained from 
the 10 folds are averaged to produce a single accuracy rate. 
The results (see row “ANN”) in Table I show that overfitting 
did happen because the accuracy rate dropped from 96.88% 
(on train and test with the same set) to 71.83% (on 10-fold 
cross-validation). 

TABLE I  BINARY CLASSIFICATION

Classification 
Algorithm

Experiments
Train and Test with 

the Same Set
10-fold Cross-

Validation

ANN 96.88% 71.83%

SVM 100% 78.13%
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In addition, we also used another classification algorithm, 
namely, support vector machine (SVM), to classify the skin 
perfusion data. Unlike ANN, which is prone to be stuck in 
local optima [11], SVM always finds the global optimum 
[21]. The results in Table I show that SVM performed 
slightly better than ANN. 

To further evaluate the generalization capability of the 
learned intelligent model, i.e., how well the learned model 
can classify unseen data, we performed a “leave-one-out” 
experiment. The idea is that we left out data associated with 
a participant as testing data and combined the other 10
participants’ data as training data. In fact, the “leave-one-
out” approach is an 11-fold cross-validation approach since 
11 subjects participated in the study. The advantage of this 
approach over 10-fold cross-validation is that data are not 
randomly partitioned; instead, data in each fold belong to a 
particular participant. Therefore, ANN is always tested by an 
unseen participant and, hence, testing data are more 
meaningful. 

TABLE II LEAVE-ONE-OUT EXPERIMENT

Classification Algorithm Leave-One-Out

ANN 41.67%

SVM 73.48%

As shown in Table II, the accuracy rate of ANN dropped 
sharply to 41.67% on the leave-one-out experiment. In 
comparison, SVM still maintained satisfying accuracy rate. 
Due to this experimental result, we include SVM in this 
study as a baseline to compare with the GA-based ANN 
approach. 

A. Issues of Binary Classification 
In binary classification, we classify the skin perfusion 

data � (see (3)) as either negative or positive. Specifically, if 
� > 1.0, we classify it as positive (or favorable for skin 
perfusion). Otherwise, we classify it as negative. However, 
this classification scheme may report false positive and/or 
false negative if � is only marginally greater or less than 1.0. 
For example, one skin perfusion ratio in our study is � = 
1.034, which means that the skin perfusion is only 
marginally increased. If we consider factors, such as the 
measurement precision, environment noise, etc., it is hard to 
tell whether this data is truly positive or not. 

V. TERNARY CLASSIFICATION

Alternatively, it would make more sense if we classify 
the skin perfusion data into three classes, namely, negative, 
neutral, and positive. In this case, we need to determine a 
threshold � such that  

� a skin perfusion ratio � is classified as negative 
if and only if � < 1.0 � �; 

� � is classified as neutral if and only if 1.0 � � 	
� 	 1.0 + �; and 

� � is classified as positive if and only if 1.0 + � <
�. 

Specifically, we intend to determine a function f 
 {-1, 
0, 1}, where 0, -1, and 1 represent neutral, negative, and 
positive skin perfusion increase, respectively; the parameters 
of f include age, duration of injury, gender, level of injury, 
completeness, and wheelchair tilt and recline angles.

We investigate three approaches to perform ternary 
classifications on skin perfusion data.  

A. Traditional Statistical Approach 
First, we use the traditional statistical approach to 

classify skin perfusion data based on the average skin 
perfusion ratio �̅ in each tilt and recline setting. The idea is 
similar to that in binary classification. Data in the same tilt 
and recline setting are classified as negative if and only if �̅
< 1.0 � �. Similarly, data in the same setting are classified as 
neutral if and only if 1.0 � � 	 �̅ 	 1.0 + � and, otherwise, 
data are classified as positive. Here, � is the threshold 
facilitating the classification. 

B. Using BP to Train ANN 
Second, we use the back-propagation (BP) algorithm to 

train ANN to classify skin perfusion data. We run the 
MultiLayerPerceptron (i.e., ANN) in Weka [22] to conduct 
this experiment. We use the default settings of ANN 
parameters, which set the learning rate to be 0.3, momentum 
to be 0.2, and the iteration number to be 500. In addition, 
support vector machine (SVM) performed better than BP-
based ANN on binary classification. Hence, we also use 
SVM with the kernel of polynomial to perform ternary 
classification so that we can compare whether SVM still 
outperforms BP-based ANN on ternary classification. 

C. Using GA to Train ANN 
Finally, we use the genetic algorithm (GA) to train ANN 

to improve the generalization capability. In order to use GA, 
we need to model the solution domain with a genetic 
representation, define the fitness function, and define GA 
operators such as selection, crossover, and mutation. 

1) Genetic representation of the solution domain.
Traditionally, a potential solution (i.e., a chromosome) is 
encoded in a binary string (i.e., 0’s and 1’s). The 
disadvantage of such an encoding is that it is not intuitive. 
In our study, we choose a natural encoding, which encodes a 
chromosome as a weight matrix of the ANN. Specifically, 
for a particular ANN, its architecture is fixed. The 
corresponding weights of the connections between neurons 
represent a solution. Therefore, a population of GA consists 
of individual chromosomes that are encoded as weight 
matrices. 

2) Fitness function. Figure 3 shows how the fitness 
function is calculated. Given a weight matrix m which is a 
potential solution to ANN, the fitness function counts the 
correct classifications based on training data D. In this 
ternary classification scheme, we label sample data as “1”
(i.e., positive), “0” (i.e., neutral), and “-1” (i.e., negative).
For each data item d in the training set D, ANN calculates 
the output based on the given weight matrix m (line 2 and 
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3). If ANN correctly classifies d (line 4), the fitness value is 
increased by 1. Here, the function label(d) returns the label 
of data item d, i.e., -1, 0, or 1. If ANN misclassifies d, but 
the difference is 1, which means either the actual or the 
expected value is neutral (i.e., 0), then we say that this 
classification is only half-correct and the fitness value is 
increased by 0.5 (line 7). Otherwise, it is a complete 
misclassification and the fitness value will not be changed. 

 

/*m is a weight matrix; D is the set of training data*/ 
Function  Fitness (m, D) 
1. correct � 0; 
2. for each data item d � D do 
3.   result � ANN(m, d) 
4.   if result == label(d) then 
5.    correct � correct + 1 
6.   else if |result – label(d)| == 1 then 
7.    correct � correct + 0.5 
8.   end if 
9. end do  
10. fitness � correct / sizeof(D) 
11. return fitness 

Figure 3. Fitness Function 

3) Selection. To improve genetic diversity, we use 
tournament selection [14] as the selection algorithm. This 
algorithm selects chromosomes at random from the 
population to “compete” in a series of tournaments. The 
winner is determined according to the fitness value. This 
selection algorithm provides a chance for chromosomes that 
are not the absolute fittest. This algorithm is also relatively 
easy to implement in a multiprocessing architecture (i.e., 
worker processes are responsible for conducting tournaments 
on different CPU cores) to improve efficiency (see Section 
(V.C.7) for more information).

The number of chromosomes that are allowed to survive 
is determined by the adaptation operator, which is designed 
to improve the solution quality and increase the rate of 
convergence.

4) Adaptation operator. Inspired by adaptive population 
sizing schemes in [15], we propose our own adaptation 
operators, which consist of the mutation adaptation operator 
and the population adaptation operator. These adaptation 
operators compute a new mutation rate and population size 
based on the current median fitness of the gene pool. The 
basic idea is to start with a large population and mutation 
size (the “exploration phase”) to increase solution quality, 
and gradually decrease the size of both the population and 
mutation (the “exploitation phase”) to decrease the number 
of calculations that GA has to perform per iteration, causing 
it to converge faster.  

Figure 4 shows the algorithms for the adaptation 
operators. There are two constants involved in the mutation 
adaptation operator to compute the new mutation ratio. 

MAX_MUT_RATIO and MIN_MUT_RATIO are 
maximum and minimum mutation ratios, which are set to be 
0.8 and 0.09, respectively. Similarly, there are two constants 
involved in the population adaptation operator to compute 
the new population size. MAX_POP_DECREASE defines 
the maximum population decrease ratio, which is set to 0.75. 
MIN_POP_SIZE is the minimum population size, which is 
set to 25. Be noted that these constants are determined during 
the experiments in this pilot study. The issue of determining 
the optimal values of these constants will be reported in the 
future study. 

 

Function Mutation_Adaptation_Operator (median_fitness) 
1. reduction_ratio � 1.0 � median_fitness  
2. new_mut_ratio � MAX_MUT_RATIO 
 reduction_ratio 
3. If new_mut_ratio < MIN_MUT_RATIO then 
4.         return MIN_MUT_RATIO 
5. else  
6.   return new_mut_ratio 
7. end if 
end Function 
 
Function Population_Adaptation_Operator (median_fitness, 
old_pop_size) 
1. reduction_ratio � 1.0 – median_fitness 
 

MAX_POP_DECREASE 
2. new_pop_size � �old_pop_size 
 reduction_ratio� 
3. if new_pop_size < MIN_POP_SIZE then 
4.   return MIN_POP_SIZE 
5. else 
6.    return new_pop_size 
7. end if 
end Function 

Figure 4. Adaptation Operators 

5) Crossover. For crossover, we apply the commonly 
used approach, i.e., take two chromosomes, namely, ch1 and 
ch2, and combine the first half of ch1 with the second half of 
ch2 to produce a new chromosome. Every chromosome is 
crossed with other chromosomes. Hence, the resulting child 
population size will be the square of the post-selection 
parent population. 

6) Mutation. The mutation operator accepts two 
parameters, namely, probability and weights, where 
probability is the probability that a weight might be 
mutated, and weights is a matrix of the connection weights 
that can be used to configure ANN. Each weight is iterated 
over with a probability that it might be mutated. The 
magnitude of the mutation is calculated with a function that 
randomly returns values from the range of -3.0 and +3.0. 
The boundary of -3.0 to 3.0 is determined from the weights 
of ANN obtained by running the MultiLayerPerceptron 
function of Weka.

7) Other optimizations. We perform two additional 
optimizations to improve the solution quality and the 
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problem solving efficiency. First, we use the technique of 
“seed chromosome” to improve the solution quality. 
Specifically, we run BP-based ANN in Weka on each fold 
to obtain a weight matrix. This weight matrix is used as one 
of the chromosomes in the initial population. The purpose is 
to ensure that the learning quality of GA-based ANN is at 
least as good as that of BP-based ANN. Second, we
implement the GA algorithm in Python. Hence, we can take 
advantage of Python’s built-in multiprocessing capability to 
spawn one worker process for each available CPU core. 
Specifically, the controller process communicates with 
worker processes via two multiprocessing queues, namely, 
an inbound queue and an outbound queue. When the 
controller puts an object onto the outbound queue, only one 
worker process can pop it off. It does not matter which 
worker process receives the object because all workers are 
identical. When a worker finishes processing an object, it 
pushes it onto the inbound queue, and the controller process 
pops it off. As mentioned previously, the selection and 
crossover operations can benefit from such a multi-
processing mechanism as well.

VI. RESULTS OF TERNARY CLASSIFICATION

In this study, we examined two thresholds, namely, � =
0.10 and � = 0.15. Table III shows the classification accuracy 
for the traditional approach that used the average skin 
perfusion ratio �̅ to classify data in the same tilt and recline 
setting. Compared to the result of binary classification (i.e., 
59.38%), the use of average data to perform ternary 
classification led to lower classification accuracy. 

TABLE III TRADITIONAL STATISTICAL APPROACH

Threshold Classification Accuracy
� = 0.10 46.97%
� = 0.15 48.48%

Since the traditional approach cannot accurately classify 
the skin perfusion data, we used the BP algorithm to train 
ANN to classify skin perfusion data. As shown in Table IV,
ANN could perfectly classify existing data (see column 
“train and test with the same set”), which is a significant 
improvement over the traditional approach.  

However, overfitting did happen because the averaged 
classification accuracy on “leave-one-out” dropped
dramatically. As a baseline, we also used SVM to perform 
the same experiments. The classification accuracy of SVM 
was slightly better than that of ANN. 

TABLE IV  RESULTS OF USING BP TO TRAIN ANN 

Algorithm
Experiments

Threshold
(��)

Train and Test with the 
Same Set

Leave-One-
Out

BP_ANN 0.10 100% 28.03%

BP_ANN 0.15 100% 21.21%

SVM 0.10 100% 36.58%

Algorithm
Experiments

Threshold
(��)

Train and Test with the 
Same Set

Leave-One-
Out

SVM 0.15 100% 49.24%

Since using BP to train ANN did not show satisfying 
generalization ability, we examined whether using GA could 
improve the generalization ability of ANN. Since the BP-
based ANN performed well on train and test with the same 
set as shown in Table IV, there is no need to use GA to train 
ANN based on the whole data set. Instead, we used GA to 
train ANN on the “leave-one-out” experiment. 

TABLE V  DETAILED RESULTS ON LEAVE-ONE-OUT EXPERIMENT

Folds
BP-ANN GA-ANN

�� = 0.10 �� = 0.15 �� = 0.10 �� = 0.15

1 16.67% 16.67% 100.00% 50.00%

2 0 16.67% 16.67% 16.67%

3 0 16.67% 16.67% 50.00%

4 25.00% 0 25% 25.00%

5 66.67% 66.67% 66.67% 66.67%

6 100.00% 83.33% 100.00% 83.33%

7 0 16.67% 66.67% 50.00%

8 50.00% 0 66.67% 33.33%

9 16.67% 0 66.67% 50.00%

10 0 0 100.00% 66.67%

11 33.33% 16.67% 100.00% 50.00%

Average 28.03% 21.21% 65.91% 49.24%

The experiment results in Table V show that using GA to 
train ANN significantly improves the generalization 
capability. The average classification accuracy is more than 
doubled on both threshold categories, i.e., from 28.03% to 
65.91% (with � = 0.10) and from 21.21% to 49.24% (with �
= 0.15). In addition, GA-based ANN also performs 
significantly better than SVM (see rows of “SVM” in Table 
IV) with � = 0.10. 

VII. DISCUSSION

First of all, we demonstrate that it is feasible to use 
machine-learning techniques to classify favorable tilt and 
recline settings for individual wheelchair users with SCI. 
When using the BP algorithm to train ANN, it perfectly 
classified the existing data (see column “train and test with 
the same set” in Table IV). In comparison, the traditional 
approach that used the average skin perfusion data to 
perform classifications only achieved an accuracy of 59.38% 
on binary classification, 46.97% on ternary classification 
with � = 0.10, and 48.48% with � = 0.15. 

Second, the objective of this study is to answer the 
question -- “Is a given wheelchair tilt and recline setting 
favorable for skin perfusion increase for a particular 
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wheelchair user with SCI?” To answer this question, we 
investigate different approaches that classify the skin 
perfusion data into two classes (i.e., binary classification) 
and into three classes (i.e., ternary classification). We then 
point out that ternary classification is more advantageous 
than binary classification in that it can reduce the chances of 
false positive/negative cases, in which the skin perfusion 
increase ratio � (see (3)) is only marginally greater or less 
than 1.0. For ternary classification, we examined two 
thresholds, namely, 0.10 and 0.15. The experimental results 
show that when using the threshold of 0.10, BP-based ANN 
and GA-based ANN performed better in classifying 
favorable tilt and recline settings than when using the 
threshold of 0.15. Therefore, the threshold of 0.15 may be 
too big to truly reduce false positive and negative 
classifications.  

Third, with a small data set (e.g., there were only 11 
participants in this study), overfitting is likely to happen. 
This is the major challenge for ternary classification. To 
minimize the overfitting impact and examine the 
generalization ability of the trained ANN, we performed
“leave-one-out” experiments that left out data associated 
with a participant as testing data and combined the rest of 
data as training data. The results show that overfitting did 
happen: BP-based ANN only achieved a classification 
accuracy of 28.03% with � = 0.10 and 21.21% with � = 0.15. 
This initiated the need to use GA to train ANN to avoid local 
optima and achieve better generalization ability. Our 
experimental results show that using GA to train ANN 
significantly improved the classification accuracy. 

Fourth, as discussed in Section V, we use techniques of 
adaptation operators and seed chromosome in our 
implementation of GA to improve the solution quality. To 
measure contributions of these two techniques, we conducted
the ablation experiments, where we ran different versions of 
GA. Each version turns off certain features. For example, the 
adaptation operator consists of the mutation adaptation 
operator and the population adaptation operator. We,
therefore, implemented three versions of GA, namely, 
GA_Mut_only (i.e., GA with the mutation adaptation 
operator only), GA_Pop_only (i.e., GA with the population 
adaptation operator only), and GA_No_Adp (i.e., GA 
without any adaptation operators). For the seed chromosome 
technique, we developed another version of GA, namely, 
GA_No_Seed (i.e., GA without seed chromosomes).
Besides, GA_Full is the algorithm that we used in this study, 
which includes all the above techniques. Table VI shows 
experimental results on adaptation operators. If the 
adaptation operators were not used (see GA_No_Adp), the 
solution quality dropped sharply compared to GA_Full. If 
only a single adaptation operator was used, the solution 
quality also dropped and GA_Pop_only performed slightly 
better than GA_Mut_only. Table VII shows the experimental 
results on the seed chromosome. GA_Full (i.e., with seed 
chromosomes) performed substantially better than 
GA_No_Seed on train and test with the same set and 
performed slightly better on leave-one-out.  

The ablation experiment results suggest that the two 
techniques, i.e., adaptation operators and seed chromosome, 

are both useful in improving the solution quality although the 
adaptation operators seem to play a more critical role. 

TABLE VI  ABLATION EXPERIMENTS ON ADAPTATION OPERATOR

Different Versions 
of GA

Train and Test with 
the Same Set Leave-One-Out

GA_Full 82.81% 65.91%

GA_No_Adp 59.38% 47.73%

GA_Mut_only 56.25% 53.79%

GA_Pop_only 62.50% 58.33%

TABLE VII ABLATION EXPERIMENTS ON SEED CHROMOSOME

Different Versions 
of GA

Train and Test with 
the Same Set Leave-One-Out

GA_Full 82.81% 65.91%

GA_No_Seed 70.31% 62.88%

Finally, we did not attempt to find the optimal ANN 
architecture that produces the best classification accuracy. 
Instead, we used the same architecture suggested by Weka 
[22] (when running its MultiLayerPerceptron function to 
perform ternary classification), which consists of three layers 
with 9 neurons being in the hidden layer as shown in Figure 
5. All the experiments were conducted based on this 
architecture to ensure a fair comparison. 

Figure 5. The Architecture of ANN 

A. Study Limitations 
First, this pilot study involved only 11 participants. We 

intended to investigate the feasibility of using ANN to 
classify/predict favorable wheelchair tilt and recline settings 
for people with SCI. We will recruit more participants to 
verify our results and refine the intelligent model. Second,
the current intelligent model considers 5 attributes of the 
participants, namely, age, gender, duration of injury, level of 
injury, and completeness. In the subsequent study, we will 
consider more attributes that may affect the learning results. 
Finally, we investigated two thresholds, namely, 0.10 and 
0.15, for ternary classification. In the subsequent study, we 
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will investigate more thresholds and identify the one that 
produces the most meaningful results. 

VIII. CONCLUSION

The purpose of this paper is to demonstrate the feasibility 
of using machine-learning techniques to classify/predict the 
favorable wheelchair tilt and recline settings for individual 
wheelchair users with SCI. We first present approaches that 
classify skin perfusion increase into two classes, namely, 
positive and negative. Then, we point out the major issue of 
binary classification, i.e., it may increase the chances of false 
positive and false negative classifications. To overcome this 
issue, we propose to perform ternary classification, i.e., 
classify skin perfusion increase into three classes, namely, 
positive, neutral, and negative. We investigated three 
approaches, namely, the traditional statistical approach, BP-
based ANN, and GA-based ANN. Our experimental results 
show that the traditional approach that used the average skin 
perfusion to perform classifications could not accurately 
classify existing data. In comparison, using the BP algorithm 
to train ANN perfectly classified the existing data. However, 
the BP-based ANN could not generalize well. It performed 
poorly on the “leave-one-out” experiment, which was an 11-
fold cross-validation. Hence, we used the genetic algorithm 
(GA) to train ANN in the “leave-one-out” experiment. Our 
experimental results show that the GA-based ANN 
significantly improved the generalization ability in 
comparison with the BP-based ANN and support vector 
machine (SVM) approaches. In summary, our experimental 
results provide suggestive evidence that using machine-
learning techniques to classify favorable wheelchair tilt and 
recline settings is feasible. 

In the next step, we will recruit more participants to 
verify and refine our ANN models. In addition, we will 
identify an optimal ANN architecture that will have good 
generalization ability to produce accurate prediction results. 
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