
Using Virtual Services to Bridge the Semantic Gap

Jicheng Fua Wei Haob I-Ling Yenc Farokh Bastanic
jfu@uco.edu haow1@nku.edu ilyen@utdallas.edu bastani@utdallas.edu

aComputer Science Department, University of Central Oklahoma,

bComputer Science Department, Northern Kentucky University
cComputer Science Department, The University of Texas at Dallas

Abstract

In cloud computing, data, software, and hardware are
wrapped as services, which are made available on
demand. Given a demand, the associated services need to
interact with each other to fulfill the task. As a result,
service reuse and composition are inevitable. The current
prevailing Web service composition paradigms follow the
bottom-up manner, i.e., the concrete services are
physically constructed first. Then, some mechanisms are
applied to raise the level of abstraction so that the service
composition process can be performed at a higher level.
However, such paradigms are very fragile. In the event
that some semantic contents are missing, the composition
will fail even though the majority of services may be
available.

In this paper, we present a service composition
approach that is a combination of the bottom-up and top-
down strategies. In terms of bottom-up, our approach
follows the current service composition methods and tries
to use existing Web services to meet the given demand. If
the composition process fails, virtual services are
proposed by the composer to bridge the semantic gap so
that the composition process will continue. Virtual
services may not have physical counterparts and may
exist only conceptually. However, it provides a high-level
specification for a service that is missing. This is a typical
top-down manner, i.e., by following the specification,
developers and designers will have clear ideas regarding
what to develop to meet the given demand. Therefore, our
approach can further improve the level of service reuse.

Keywords: Virtual service, Cloud computing, AI
planning, Graphplan, Web service composition.

1. Introduction

In cloud computing, infrastructure, platform, and
software can all be provided as services. The goal is to
relieve users from the burden of managing and
maintaining hardware, software, and data and, perhaps,
save money by shifting the burden to the cloud service
providers [7]. Especially, cloud computing is
characterized as making services available on demand.

Different demands may involve different sets of services
and in different order. This is the place where service
composition techniques come into play.

There are currently many different service composition
paradigms available, such as AI planning-based paradigm
[9][13], pattern-based paradigm [4][12], and workflow-
based paradigm [6], etc. Common to these paradigms is
that they use different techniques to raise the level of
abstraction above the concrete services and perform
composition from a high level. This is typically a bottom-
up manner. However, the problem with these paradigms is
that when a single piece of information is missed, the
whole composition process will fail. This hampers the
reuse of existing services. Especially, given the huge
number of services available in the cloud, simply
returning failure leaves no clue for the concerned persons
to figure out the nature of the problem.

In this paper, we propose a paradigm that is a mixture
of the bottom-up and top-down strategy to improve the
level of service reuse. Specifically, we use the AI
planning-based paradigm to conduct the composition. If
the planning process fails, a virtual service is proposed to
connect the existing services to enable the planning
process to go through. The planning result will provide
valuable information to reveal the nature of the problem.
The proposed virtual service provides a specification that
serves as the blue print for further analysis, design, and
development.

To ensure that the proposed virtual service has
practical values, the metrics for virtual services are
proposed to guide and evaluate the proposal of the virtual
services. We present a novel technique to quantify the
“hardness” of propositions, which makes it easier to
evaluate the metrics of virtual services, i.e., usefulness,
maximum reuse of existing services, and ease of
implementation.

This work is an extension of our previous work in [5],
in which an algorithm is presented to propose virtual
services under the deterministic planning domains.
However, deterministic (classical) planning makes several
assumptions that are insufficient to express complex
control structures, such as conditional and loop
constructs. In this paper, we present an algorithm that can
propose virtual services in the event of planning failure

2010 IEEE International Conference on Semantic Computing

978-0-7695-4154-9/10 $26.00 © 2010 IEEE

DOI 10.1109/ICSC.2010.60

218

2010 IEEE Fourth International Conference on Semantic Computing

978-0-7695-4154-9/10 $26.00 © 2010 IEEE

DOI 10.1109/ICSC.2010.60

218

2010 IEEE Fourth International Conference on Semantic Computing

978-0-7695-4154-9/10 $26.00 © 2010 IEEE

DOI 10.1109/ICSC.2010.60

218

under nondeterministic domains. This significantly
increases the practical values of the proposed virtual
services.

In addition, the algorithm proposed in this paper is an
implementation of the general idea of the virtual service
proposal, which is a bi-directional process in the event of
composition failure. One direction is to start from the
current state and proceed as far as possible towards the
goal state. The other direction is to start from the goal and
proceed as far as possible towards the current state. Then,
a virtual service is proposed to connect these two extreme
points to bridge the semantic gap. In this paper, we show
how to use Graphplan’s [1] intrinsic features, e.g., level-
off, etc., to facilitate the implementation of the general
idea.

The rest of this paper is organized as follows: In
Section 2, we present notational conventions as well as an
overview of Graphplan and its favorable features for
identifying virtual services. In Section 3, we propose the
metrics for evaluating the quality of the virtual services.
In Section 4, the algorithm for proposing virtual services
under nondeterministic domains is presented, and in
Section 5, we conclude the paper and identify some future
research directions.

2. Notations and Background

In this section, we first present the notations used in

this paper. Then, we review the Graphplan algorithm [1]
and its favorable features, based on which our algorithm
is designed for virtual service proposal.

2.1. Notations

Typically, an AI planning system can be modeled as

a state transition system. An action can trigger a transition
from one state to other state(s). In classical planning
domains, all actions are deterministic.

A planning action a can be modeled with the
precondition and effect, which is formally denoted as
pre(a) and eff(a).

Definition 1 (Deterministic Domain). A deterministic
planning domain is a 4-tuple = P, S, A, , where:

 P is a finite set of propositions;
 S 2P is a finite set of states in the system;
 A is a finite set of actions;
 : S A S is the state transition function.

However, as pointed by [6], classical planning

systems are insufficient to solve Web service
composition. For example, the composite Web services
may contain conditional and/or loop constructs that are
beyond the expression power of the classical planning

systems. Hence, we relax the definition of the state
transition function to nondeterministic functions, i.e,

 : S A 2S

The effect of an action is no longer a single state. Instead,
it is a set of possible states. In addition, we formally
define a planning problem as follows:

Definition 2 (Planning Problem). A planning problem is
a triple s0, g, A , where s0 is the initial state, g is the goal
state, and A is the finite set of actions.

2.2. Graphplan

Graphplan is a deterministic planning algorithm

based on planning graph, which is a directed, layered
graph interleaved with proposition levels and action levels.
As illustrated in Figure 1, given a planning problem s0, g,
A , the planning graph starts from a proposition level P0,
which represents the initial state s0. Then, all the actions
that are applicable to P0 will be put to the first action level
A1. The effects of the actions in A1 together with the
propositions in P0 will form the next proposition level P1.
A special type of actions, called “No-op”, is used to
propagate the propositions from P0 to P1. This
corresponds to the graph expansion phase, during which
the planning graph is extended in the forward direction
until it has achieved a necessary (but perhaps insufficient)
condition for plan existence. Then, the algorithm switches
to the solution extraction phase, which performs a
backward-chaining search on the graph to identify a valid
plan.

P0 Pi Ai+1 Pi+1

Figure 1: Planning Graph

A valid plan found during the solution extraction

phase is a planning-graph where actions at the same level
are not mutex, each action’s preconditions are made true
by the plan, and all the goals are satisfied. If no plans are
found, then the termination condition for Graphplan is
that if two adjacent proposition levels of the forward
planning-graph are identical, i.e., they contain the same
set of propositions and have the same mutex relations,
then the planning-graph has leveled off and the algorithm
returns with failure [1].

219219219

When level-off happens, the last proposition level
contains all the propositions that can be reached from the
initial state s0. In terms of the distance to the goal, the last
proposition level is the farthest point that the planning
process can go when level-off occurs. This feature can be
utilized to facilitate virtual service proposal in Section 4.

3. Metrics for Virtual Services

To ensure that the proposed virtual services indeed

have practical values, we define the following metrics for
virtual services proposal.

3.1. Maximal Reuse of Existing Services

To some extent, the proposed virtual service works

like a magic black box, which connects the existing
services to enable the composition process to go through.
If we go to an extreme, the precondition of the virtual
service contains the initial state of the planning problem;
while the effect of the virtual service contains the goal
state. Then, the generated plan simply contains this single
virtual service. However, such kind of result is not useful
in practice. Therefore, the generated plan should reuse as
many existing services as possible. This is actually a
greedy strategy. Assume that the semantic content
required by the given demand is constant, then, the more
we reuse the existing services, the less we need to propose
to bridge the semantic gap.

In addition, we propose a method to rank the
difficulty of the propositions involved in the composition
process. We consider the propositions in the goal state as
the hardest conditions to reach. This is easy to understand
because if the goal is easy to achieve, there is no need to
use AI planning to compose the services at all. In contrast,
the propositions in the initial state are considered as
easiest because they are given. Other propositions are
ranked according to their distance to the goal state.

Formally, we use the level-membership (lms)
function to denote the difficulty of a proposition. Function
lms is defined as lms: P N, where P is the set of
propositions defined in Definition 1 and N is the set of
integers. Specifically,

p P, lms(p) = min{i | p Pi in the planning

graph}.

Hence, function lms returns the id of the first

proposition level in which p appears in the planning
graph. Therefore, the smaller the value of lms(p) is, the
farther p is from the goal state and the easier to reach the
proposition p.

The proposed virtual service is not expected to
generate “hard” conditions. In other words, the virtual
service should contribute to the goal state indirectly. The

effect of the virtual service should enable other existing
services to be involved in the composition process and
rely on existing services to achieve the goal state.

3.2. Easy to Implement

This metric is two-folds. First, the specification of the

virtual service should be informative. The more
information it conveys, the easier for the designers to
understand the nature of the problem. For example, the
precondition of the virtual service could be “true”, which
means that this service can be applied under any
situations. However, such specification is not informative
enough and may not truly reveal the nature of the
problem.

Second, the proposed virtual service should be
practical and easy to implement. To be practical, the
precondition of the virtual service should contain “hard”
propositions. It means that this virtual service does not
rely on the given initial state s0 and can be applied at a
later point during the planning process to contribute to the
goal state. On the other hand, the effect generated by the
virtual service should contain “easy” propositions. The
reason has been explained in Section 3.1. Since the virtual
service generates “easy” propositions, we assume that this
service is relatively easy to be implemented. Therefore,
when multiple choices are possible, the effect of the
virtual service should choose easier propositions. This
metric is fully consistent with the previous one, i.e.,
maximum reuse of existing services when deciding the
effect of the virtual service.

4. Algorithm for Proposing Virtual Services

Given a planning problem s0, g, A , the proposed
algorithm follows the conventional planning approach
trying to find a plan. In the case of failing to find a plan,
the algorithm proceeds in two directions. First, it starts
from the initial state s0 and goes as far as possible towards
the goal g. Then, it starts from the goal g and goes as far
as possible towards the initial state s0. Finally, a virtual
service is proposed to connect these two processes such
that both processes will succeed.

In Section 4.1, we present how to transform a
nondeterministic domain into a deterministic one so that
the classical Graphplan algorithm can be used to solve the
nondeterministic problems.

In Section 4.2, we address the issue of how the
algorithm can proceed in these two directions to propose
the virtual service. The outline of the algorithm is shown
in Figure 2. The idea is that a plan is generated by
considering only the most likely outcome of each action.
The generated plan is called a weak plan, which is defined
as “have a chance to achieve the goal, but is not
guaranteed to do so” [2]. Then, a subplanning is initiated

220220220

for each “omitted” effect in the weak plan. We presented
an efficient algorithm in [3] that treats different sub-
planning processes as inter-connected and avoids wasting
time to explore the same states repeatedly. The proposed
algorithm in Figure 2 follows the same idea in [3] to
achieve efficient planning. However, efficiency is beyond
the scope of this paper. Our focus is on how to propose
virtual services in the event of planning failure (i.e., lines
2 3 in the function of GetPlan).

/* Given a planning problem s0, g, A , a backbone weak plan
*WPb is generated first.
*/
Main(s0, g, A){
1. Run a Graphplan-based planner on s0, g, A and

obtain WPb;
2. If (WPb == NULL)
3. Return “No plan exists!”;
4. Else
5. Return GetPlan(WPb);
6. End If
7. }

GetPlan (wp){
1. For each nondeterministic branch i in wp, start a subplanning to

generate a weak plan wpi;
2. If failed to find a plan Then
3. Propose a partial virtual service pvsi to enable the

 current planning process to succeed;
4. Else
5. wpi = GetPlan(wpi);
6. End If
7. Assemble(wp, wpi);
8. End For
9. Return wp;}

Figure 2: Algorithm Outline

The function of GetPlan is a recursive function. The

termination rule is that there are no nondeterministic
branches in the subplanning process. This is guaranteed to
happen because we have an additional rule: If action a1 is
the action generating the effect in branch i in line 1
(GetPlan), a1 will be removed from the next recursive call
in line 5 to avoid a1 interfering the subsequent planning
process. Hence, the size of the resulting action set A will
be at least one less than the original action set A. Since A
is a finite set, there will be no infinite recursive calls.

4.1. Nondeterministic Domain to Deterministic

Domain Transformation

We employ a method similar to that introduced in

[10] to transform a nondeterministic domain to a
deterministic one so that a classical AI planner can work

on it. Essentially, each nondeterministic action with
multiple possible effects is converted into a set of
deterministic actions, with one deterministic action for
each effect. To illustrate this, let φ be a nondeterministic
action and Eφ = {e1, e2, …, en} denote the set of φ’s
effects. Also, let Aφ = { 1, 2, …, n} denote the
corresponding set of deterministic actions generated from
φ. We have

i, pre(i) = pre(φ) and,

 eff(i) = ei.

4.2. Virtual Services Proposal

In this section, we address the issue of how to

conduct planning in two directions to propose the virtual
service when the conventional planning process fails. In
both directions, we want to go as far as possible so that
the semantic gap will be as small as possible.

4.2.1 Using Level-Off to Identify the Extreme Levels in
Both Planning Directions. Recall that a planning graph
will level off if no plan is possible. Semantically, level-off
means that all the reachable propositions have been
included in the planning graph while the goal state is still
not met. In other words, we cannot go any further towards
the goal state beyond the point of level-off. This perfectly
fits in our needs, i.e., trying to go as far as possible toward
the goal.

For the reverse direction, i.e., from the goal state to
the initial state, we follow the same idea. Nevertheless,
the planning process is based on the reverse actions. The
idea of reverse actions is used in [8], in which the
planning graph first grows backwardly to the initial state.
Then, the resulting graph is used to guide the normal
planning process. Although the reverse actions are not as
rigorously defined as the normal actions, they can
facilitate the backward planning process and help us
identify the nearest point to the initial state in the
backward planning. We first define the reverse operator -1
to facilitate the subsequent discussion.

Definition 3 (Reverse Operator -1): The reverse operator
is defined over 2P 2P 2P 2P such that (Pre, Post)-1 =
(Post, Pre), where P is the set of propositions in the
planning domain in Definition 1 and Pre, Post 2P.

Given an action a, pre(a-1) = eff(a) and eff(a-1) =

pre(a). We can extend the definition of the reverse
operator to planning problems as well. Hence, s0, g, A -1
= g, s0, A-1 and a A a-1 A-1.

Therefore, to go as far as possible towards s0 from g,
we simply run the planner for the reverse planning
problem until level-off takes place. In [5], we have shown
that level-off will definitely happen in the reverse

221221221

planning problem g, s0, A-1 if the regular forward
planning s0, g, A fails.

4.2.2 The Precondition of the Virtual Service. After
both planning processes level off, we assume that the last
proposition level in the planning problem s0, g, A is Plf
and the last proposition level in the planning problem g,
s0, A-1 is Plb. Then, we calculate the precondition of the
virtual service pvs as

 pre(pvs) = Plf s0 Plb

This fits in the metrics for virtual service proposal. In
Section 3.2, we conclude that the precondition of the
virtual service should contain “hard” propositions
measured by the level membership function lms.
Therefore, all the propositions in s0 are removed first
because they are given and considered as “easy”. Next,
the overlapping portion in Plf and Plb is removed. This
follows the following heuristic. When an action is
applied, part of the preconditions will no longer be valid
and, thus, will be moved into the delete effect. We
consider this part as the essential part in the semantic
meaning of an action. Since the virtual service pvs is used
to connect the two planning processes, the proposition
level Plb is treated as the next proposition level after Plf.
Hence, the propositions in Plf s0 but not in Plb are
considered as the essential part of the precondition.

4.2.3 The Effect of the Virtual Service. According to the
metrics in Sections 3.1 and 3.2, the propositions in the
effect of the virtual service should be “easy” so that it will
be easily implemented and only contribute to the goal
state indirectly. The effect is proposed as follows,

eff(pvs) = (Plb g Plf) (g
lbAa

apre)(),

where Alb is the last action level in the backward planning
graph. In the first step, we remove all the propositions in
g from Plb because we consider that propositions in g are
“hard” to achieve. Then, we remove the overlapped
portion in Plb and Plf because this set of propositions is
reachable from the initial state s0 while the virtual service
is used to bridge the semantic gap and its effect should
contain propositions that are not reachable from s0.

The last part (g
lbAa

apre)() is a little complex.

This set of propositions is a subset of the goal state. They
reach the last proposition level because of the “No-op”
actions passing them all the way there. Hence, they are
not consumed by any actions in the backward planning
process g, s0, A-1 . Since all the actions in this planning
process are in the reverse form of the original planning
problem s0, g, A , we can equally say that this set of

propositions is not generated by any actions during the
planning process s0, g, A . The only way to generate them
is to include them in the effect of the virtual service so
that the semantic gap is filled.

Due to the use of “No-ops”, all the actions that
appear in the current action level will appear in the next
action level as well. As a result, the last action level Alb
contains all the actions in the planning graph.

lbAa
apre)(is the set of propositions that are

consumed by some actions in the planning graph. Hence,
(g

lbAa
apre)() is the set of propositions that are not

consumed by any actions and should be contained in the
effect of the virtual service.

In summary, the algorithm that is designed for virtual
service proposal is shown in Figure 3.

/*pvs: is the virtual service to be proposed*/
Propose_Virtual_Service(S0, G, A)
1. Start planning 1 on the planning problem S0, G, A ;
2. If level-off happens Then
3. Start another planning process 2 on the planning

 problem G, S0, A-1
4. Assume that Plf is the proposition level that level-off

 is identified in 1; and Plb is the proposition level
 that level-off is identified in 2.

5. pre(pvs) = Plf S0 Plb;
6. eff(pvs) = (Plb G Plf) (G

lbAa
apre)();

7. Else
8. Generate the plan;
9. End If

Figure 3: The Algorithm for Virtual Service Proposal

4.3. Combine Partial Virtual Services into a

Complete Virtual Service

The function “Propose_Virtual_Service” shown in

Figure 3 is invoked in line 3 in Figure 2, the outline of the
algorithm. The function proposes a partial virtual service
for each specific subplanning. For the sake of simplicity,
we will combine all the partial virtual services into a
complete service at the end.

Formally, the whole planning process proposes a set
of partial virtual services Sv = {pvs1, pvs2, …, pvsn}.
According to the PDDL (Planning Domain Definition
Language) [11], these partial virtual services can be
connected together by using the conditional effects, which
have the following form:

(When
 CONDITION_FORMULA
 EFFECT_FORMULA)

222222222

Hence, the conditional effect for the complete virtual
service will be composed as follows:

(When pre(pvs1) eff(pvs1))
(When pre(pvs2) eff(pvs2))

 … …
 (When pre(pvsn) eff(pvsn))

5. Conclusions and Future Research
Directions

In this paper, we presented an algorithm to identify

virtual services in the event of composition failure.
Virtual services are used to bridge the semantic gaps and
enable the composition process to continue even though
the exiting service composition method may fail. This
algorithm works on nondeterministic planning domains
and, hence, is capable of solving practical problems. The
metrics of evaluating the quality of the proposed virtual
services are also proposed. To facilitate the evaluation, we
present a technique to rank the difficulty of propositions
such that the evaluation process can be quantified. This
technique significantly simplifies the evaluation process
and provides valuable information to guide the proposal
of virtual services.

Virtual services are treated in the same way as
regular services during the composition and, more
importantly, their specifications are useful for further
analysis, design, and development. This is especially
useful under the cloud computing environment as the
number of available services can be huge. The generated
plan will help reveal the nature of the demand and the
virtual service will help the concerned persons develop
concrete ideas about what is lacking and how to
implement the missing content. This is typically a top-
down fashion to develop services. To the best of our
knowledge, we are the first to combine the bottom-up and
top-down strategies together to improve the level of
service reuse.

In the next step, we will turn our focus on proposing
virtual services with QoS concerns. The proposed virtual
services are not only used to bridge the semantic gap, but
also maximize QoS during the selection of services by
considering reputation, price, duration, reliability, etc.
This will enable virtual services to provide more useful
information and better reflect the true needs in cloud
computing.

6. References

[1] A. Blum and M. Furst, “Fast planning through

planning graph analysis”, Artificial Intelligence, 90,
1997, pp. 281–300.

[2] A. Cimatti, M. Pistore, M. Roveri, and P. Traverso,
“Weak, strong, and strong cyclic planning via
symbolic model checking”, Artificial Intelligence,
147(1-2), 2003, pp. 35–84.

[3] J. Fu, F. B. Bastani, V. Ng, I. Yen, and Y. Zhang,
“FIP: A Fast Graphplan-Based Iterative Planner”,
20th IEEE International Conference on Tools with
Artificial Intelligence: pp. 419–426, 2008.

[4] J. Fu, F. Bastani, I. Yen, W. Hao, “Using Service
Patterns to Achieve Web Service Composition”,
ICSC 2009: 402-407.

[5] J. Fu, W. Hao, M. Tu, B. Ma, J. Baldwin, and F.
Bastani, “Virtual Services in Cloud Computing”,
will appear in the proceedings of SERVICES 2010,
2010

[6] J. Gekas and M. Fasli, “Automatic Web Service
Composition Based on Graph Network Analysis
Metrics”, OTM Conferences (2) 2005: 1571-1587.

[7] B. Hayes, “Cloud computing”, Communications of
the ACM, Volume 51, Issue 7, July 2008.

[8] R. Kambhampati, E. Paeker, and E. Lambrecht,
“Understanding and extending graphplan”, In Proc.
4th European Conference on Planning, Sept. 1997.

[9] M. Klusch, A. Gerber, and M. Schmidt, “Semantic
web service composition planning with OWLS-
Xplan,” Proc. 1st Intl. AAAI Fall Symposium on
Agents and the Semantic Web, Arlington VA, USA,
2005.

[10] U. Kuter, D. Nau, E. Reisner, R. P. Goldman,
“Using Classical Planners to Solve Nondeterministic
Planning Problems”, Proceedings of ICAPS-08, pp.
190-197.

[11] D. McDermott, et al., “The PDDL Planning Domain
Definition Language”, the AIPS-2004 Planning
Competition Committee, 2004.

[12] A. t. Teije, F. v. Harmelen, B. Wielinga,
"Configuration of Web Services as Parametric
Design", Proceedings of the Proceedings of the 14th
International Conference on Knowledge
Engineering and Knowledge Management, pp. 321-
336, 2004.

[13] D. Wu, E. Sirin, J. Hendler, D. Nau, and B. Parsia,
“Automatic Web services composition using
SHOP2”, In Workshop on Planning for Web
Services, Trento, Italy, June 2003.

223223223

