
Using Virtual Services to Bridge the Semantic Gap 
 
 

Jicheng Fua Wei Haob I-Ling Yenc Farokh Bastanic 
jfu@uco.edu haow1@nku.edu ilyen@utdallas.edu bastani@utdallas.edu 

 
aComputer Science Department, University of Central Oklahoma,  

bComputer Science Department, Northern Kentucky University  
cComputer Science Department, The University of Texas at Dallas 

 
 

Abstract 
 

In cloud computing, data, software, and hardware are 
wrapped as services, which are made available on 
demand. Given a demand, the associated services need to 
interact with each other to fulfill the task. As a result, 
service reuse and composition are inevitable. The current 
prevailing Web service composition paradigms follow the 
bottom-up manner, i.e., the concrete services are 
physically constructed first. Then, some mechanisms are 
applied to raise the level of abstraction so that the service 
composition process can be performed at a higher level. 
However, such paradigms are very fragile. In the event 
that some semantic contents are missing, the composition 
will fail even though the majority of services may be 
available. 

In this paper, we present a service composition 
approach that is a combination of the bottom-up and top-
down strategies. In terms of bottom-up, our approach 
follows the current service composition methods and tries 
to use existing Web services to meet the given demand. If 
the composition process fails, virtual services are 
proposed by the composer to bridge the semantic gap so 
that the composition process will continue. Virtual 
services may not have physical counterparts and may 
exist only conceptually. However, it provides a high-level 
specification for a service that is missing. This is a typical 
top-down manner, i.e., by following the specification, 
developers and designers will have clear ideas regarding 
what to develop to meet the given demand. Therefore, our 
approach can further improve the level of service reuse. 
 
Keywords: Virtual service, Cloud computing, AI 
planning, Graphplan, Web service composition. 

 

1.  Introduction 
 

In cloud computing, infrastructure, platform, and 
software can all be provided as services. The goal is to 
relieve users from the burden of managing and 
maintaining hardware, software, and data and, perhaps, 
save money by shifting the burden to the cloud service 
providers [7]. Especially, cloud computing is 
characterized as making services available on demand. 

Different demands may involve different sets of services 
and in different order. This is the place where service 
composition techniques come into play. 

There are currently many different service composition 
paradigms available, such as AI planning-based paradigm 
[9][13], pattern-based paradigm [4][12], and workflow-
based paradigm [6], etc. Common to these paradigms is 
that they use different techniques to raise the level of 
abstraction above the concrete services and perform 
composition from a high level. This is typically a bottom-
up manner. However, the problem with these paradigms is 
that when a single piece of information is missed, the 
whole composition process will fail. This hampers the 
reuse of existing services. Especially, given the huge 
number of services available in the cloud, simply 
returning failure leaves no clue for the concerned persons 
to figure out the nature of the problem. 

In this paper, we propose a paradigm that is a mixture 
of the bottom-up and top-down strategy to improve the 
level of service reuse. Specifically, we use the AI 
planning-based paradigm to conduct the composition. If 
the planning process fails, a virtual service is proposed to 
connect the existing services to enable the planning 
process to go through. The planning result will provide 
valuable information to reveal the nature of the problem. 
The proposed virtual service provides a specification that 
serves as the blue print for further analysis, design, and 
development. 

To ensure that the proposed virtual service has 
practical values, the metrics for virtual services are 
proposed to guide and evaluate the proposal of the virtual 
services. We present a novel technique to quantify the 
“hardness” of propositions, which makes it easier to 
evaluate the metrics of virtual services, i.e., usefulness, 
maximum reuse of existing services, and ease of 
implementation. 

This work is an extension of our previous work in [5], 
in which an algorithm is presented to propose virtual 
services under the deterministic planning domains. 
However, deterministic (classical) planning makes several 
assumptions that are insufficient to express complex 
control structures, such as conditional and loop 
constructs. In this paper, we present an algorithm that can 
propose virtual services in the event of planning failure 
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under nondeterministic domains. This significantly 
increases the practical values of the proposed virtual 
services. 

In addition, the algorithm proposed in this paper is an 
implementation of the general idea of the virtual service 
proposal, which is a bi-directional process in the event of 
composition failure. One direction is to start from the 
current state and proceed as far as possible towards the 
goal state. The other direction is to start from the goal and 
proceed as far as possible towards the current state. Then, 
a virtual service is proposed to connect these two extreme 
points to bridge the semantic gap. In this paper, we show 
how to use Graphplan’s [1] intrinsic features, e.g., level-
off, etc., to facilitate the implementation of the general 
idea. 

The rest of this paper is organized as follows: In 
Section 2, we present notational conventions as well as an 
overview of Graphplan and its favorable features for 
identifying virtual services. In Section 3, we propose the 
metrics for evaluating the quality of the virtual services. 
In Section 4, the algorithm for proposing virtual services 
under nondeterministic domains is presented, and in 
Section 5, we conclude the paper and identify some future 
research directions. 
 

2. Notations and Background 
 
In this section, we first present the notations used in 

this paper. Then, we review the Graphplan algorithm [1] 
and its favorable features, based on which our algorithm 
is designed for virtual service proposal.  

 
2.1. Notations 

 
Typically, an AI planning system can be modeled as 

a state transition system. An action can trigger a transition 
from one state to other state(s). In classical planning 
domains, all actions are deterministic. 

A planning action a can be modeled with the 
precondition and effect, which is formally denoted as 
pre(a) and eff(a). 
 
Definition 1 (Deterministic Domain). A deterministic 
planning domain is a 4-tuple  = P, S, A, , where: 

 P is a finite set of propositions; 
 S  2P is a finite set of states in the system; 
 A is a finite set of actions; 
  : S  A  S is the state transition function. 

 
However, as pointed by [6], classical planning 

systems are insufficient to solve Web service 
composition. For example, the composite Web services 
may contain conditional and/or loop constructs that are 
beyond the expression power of the classical planning 

systems. Hence, we relax the definition of the state 
transition function   to nondeterministic functions, i.e, 

 
 : S  A  2S  

 
The effect of an action is no longer a single state. Instead, 
it is a set of possible states. In addition, we formally 
define a planning problem as follows: 
 
Definition 2 (Planning Problem). A planning problem is 
a triple s0, g, A , where s0 is the initial state, g is the goal 
state, and A is the finite set of actions. 
 
2.2. Graphplan 

 
Graphplan is a deterministic planning algorithm 

based on planning graph, which is a directed, layered 
graph interleaved with proposition levels and action levels. 
As illustrated in Figure 1, given a planning problem s0, g, 
A , the planning graph starts from a proposition level P0, 
which represents the initial state s0. Then, all the actions 
that are applicable to P0 will be put to the first action level 
A1. The effects of the actions in A1 together with the 
propositions in P0 will form the next proposition level P1. 
A special type of actions, called “No-op”, is used to 
propagate the propositions from P0 to P1. This 
corresponds to the graph expansion phase, during which 
the planning graph is extended in the forward direction 
until it has achieved a necessary (but perhaps insufficient) 
condition for plan existence. Then, the algorithm switches 
to the solution extraction phase, which performs a 
backward-chaining search on the graph to identify a valid 
plan.  
 

P0  Pi     Ai+1 Pi+1  

 
Figure 1: Planning Graph 

 
A valid plan found during the solution extraction 

phase is a planning-graph where actions at the same level 
are not mutex, each action’s preconditions are made true 
by the plan, and all the goals are satisfied. If no plans are 
found, then the termination condition for Graphplan is 
that if two adjacent proposition levels of the forward 
planning-graph are identical, i.e., they contain the same 
set of propositions and have the same mutex relations, 
then the planning-graph has leveled off and the algorithm 
returns with failure [1]. 
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When level-off happens, the last proposition level 
contains all the propositions that can be reached from the 
initial state s0. In terms of the distance to the goal, the last 
proposition level is the farthest point that the planning 
process can go when level-off occurs. This feature can be 
utilized to facilitate virtual service proposal in Section 4. 

 

3. Metrics for Virtual Services 
 
To ensure that the proposed virtual services indeed 

have practical values, we define the following metrics for 
virtual services proposal. 

 
3.1. Maximal Reuse of Existing Services 

 
To some extent, the proposed virtual service works 

like a magic black box, which connects the existing 
services to enable the composition process to go through. 
If we go to an extreme, the precondition of the virtual 
service contains the initial state of the planning problem; 
while the effect of the virtual service contains the goal 
state. Then, the generated plan simply contains this single 
virtual service. However, such kind of result is not useful 
in practice. Therefore, the generated plan should reuse as 
many existing services as possible. This is actually a 
greedy strategy. Assume that the semantic content 
required by the given demand is constant, then, the more 
we reuse the existing services, the less we need to propose 
to bridge the semantic gap.  

In addition, we propose a method to rank the 
difficulty of the propositions involved in the composition 
process. We consider the propositions in the goal state as 
the hardest conditions to reach. This is easy to understand 
because if the goal is easy to achieve, there is no need to 
use AI planning to compose the services at all. In contrast, 
the propositions in the initial state are considered as 
easiest because they are given. Other propositions are 
ranked according to their distance to the goal state.  

Formally, we use the level-membership (lms) 
function to denote the difficulty of a proposition. Function 
lms is defined as lms: P  N, where P is the set of 
propositions defined in Definition 1 and N is the set of 
integers. Specifically,  

 
p  P, lms(p) = min{i | p  Pi in the planning 

graph}.  
 
Hence, function lms returns the id of the first 

proposition level in which p appears in the planning 
graph. Therefore, the smaller the value of lms(p) is, the 
farther p is from the goal state and the easier to reach the 
proposition p. 

The proposed virtual service is not expected to 
generate “hard” conditions. In other words, the virtual 
service should contribute to the goal state indirectly. The 

effect of the virtual service should enable other existing 
services to be involved in the composition process and 
rely on existing services to achieve the goal state. 
 
3.2. Easy to Implement 

 
This metric is two-folds. First, the specification of the 

virtual service should be informative. The more 
information it conveys, the easier for the designers to 
understand the nature of the problem. For example, the 
precondition of the virtual service could be “true”, which 
means that this service can be applied under any 
situations. However, such specification is not informative 
enough and may not truly reveal the nature of the 
problem. 

Second, the proposed virtual service should be 
practical and easy to implement. To be practical, the 
precondition of the virtual service should contain “hard” 
propositions. It means that this virtual service does not 
rely on the given initial state s0 and can be applied at a 
later point during the planning process to contribute to the 
goal state. On the other hand, the effect generated by the 
virtual service should contain “easy” propositions. The 
reason has been explained in Section 3.1. Since the virtual 
service generates “easy” propositions, we assume that this 
service is relatively easy to be implemented. Therefore, 
when multiple choices are possible, the effect of the 
virtual service should choose easier propositions. This 
metric is fully consistent with the previous one, i.e., 
maximum reuse of existing services when deciding the 
effect of the virtual service. 

 

4. Algorithm for Proposing Virtual Services 
 

Given a planning problem s0, g, A , the proposed 
algorithm follows the conventional planning approach 
trying to find a plan. In the case of failing to find a plan, 
the algorithm proceeds in two directions. First, it starts 
from the initial state s0 and goes as far as possible towards 
the goal g. Then, it starts from the goal g and goes as far 
as possible towards the initial state s0. Finally, a virtual 
service is proposed to connect these two processes such 
that both processes will succeed. 

In Section 4.1, we present how to transform a 
nondeterministic domain into a deterministic one so that 
the classical Graphplan algorithm can be used to solve the 
nondeterministic problems.  

In Section 4.2, we address the issue of how the 
algorithm can proceed in these two directions to propose 
the virtual service. The outline of the algorithm is shown 
in Figure 2. The idea is that a plan is generated by 
considering only the most likely outcome of each action. 
The generated plan is called a weak plan, which is defined 
as “have a chance to achieve the goal, but is not 
guaranteed to do so” [2]. Then, a subplanning is initiated 
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for each “omitted” effect in the weak plan. We presented 
an efficient algorithm in [3] that treats different sub-
planning processes as inter-connected and avoids wasting 
time to explore the same states repeatedly. The proposed 
algorithm in Figure 2 follows the same idea in [3] to 
achieve efficient planning. However, efficiency is beyond 
the scope of this paper. Our focus is on how to propose 
virtual services in the event of planning failure (i.e., lines 
2  3 in the function of GetPlan). 

 
/*  Given a planning problem s0, g, A , a backbone weak plan 
*WPb is generated first. 
*/ 
Main( s0, g, A ){ 
1. Run a Graphplan-based planner on s0, g, A  and  

obtain WPb; 
2. If (WPb == NULL) 
3.  Return “No plan exists!”; 
4. Else 
5.  Return GetPlan(WPb); 
6. End If 
7. } 
 
GetPlan (wp){           
1. For each nondeterministic branch i in wp, start a subplanning to 

generate a weak plan wpi; 
2.   If failed to find a plan Then 
3.    Propose a partial virtual service pvsi to enable the     

   current planning process to succeed; 
4.   Else  
5.    wpi = GetPlan(wpi); 
6.   End If 
7.   Assemble(wp, wpi); 
8. End For 
9. Return wp;} 
 
 

Figure 2: Algorithm Outline 
 
The function of GetPlan is a recursive function. The 

termination rule is that there are no nondeterministic 
branches in the subplanning process. This is guaranteed to 
happen because we have an additional rule: If action a1 is 
the action generating the effect in branch i in line 1 
(GetPlan), a1 will be removed from the next recursive call 
in line 5 to avoid a1 interfering the subsequent planning 
process. Hence, the size of the resulting action set A  will 
be at least one less than the original action set A. Since A 
is a finite set, there will be no infinite recursive calls. 

 
4.1. Nondeterministic Domain to Deterministic 

Domain Transformation 
 
We employ a method similar to that introduced in 

[10] to transform a nondeterministic domain to a 
deterministic one so that a classical AI planner can work 

on it. Essentially, each nondeterministic action with 
multiple possible effects is converted into a set of 
deterministic actions, with one deterministic action for 
each effect. To illustrate this, let φ be a nondeterministic 
action and Eφ = {e1, e2, …, en} denote the set of φ’s 
effects. Also, let Aφ = { 1, 2, …, n} denote the 
corresponding set of deterministic actions generated from 
φ. We have 

  
i, pre( i) = pre(φ) and, 

 eff( i) = ei. 
 
4.2. Virtual Services Proposal 

 
In this section, we address the issue of how to 

conduct planning in two directions to propose the virtual 
service when the conventional planning process fails. In 
both directions, we want to go as far as possible so that 
the semantic gap will be as small as possible. 

 
4.2.1 Using Level-Off to Identify the Extreme Levels in 
Both Planning Directions. Recall that a planning graph 
will level off if no plan is possible. Semantically, level-off 
means that all the reachable propositions have been 
included in the planning graph while the goal state is still 
not met. In other words, we cannot go any further towards 
the goal state beyond the point of level-off. This perfectly 
fits in our needs, i.e., trying to go as far as possible toward 
the goal. 

For the reverse direction, i.e., from the goal state to 
the initial state, we follow the same idea. Nevertheless, 
the planning process is based on the reverse actions. The 
idea of reverse actions is used in [8], in which the 
planning graph first grows backwardly to the initial state. 
Then, the resulting graph is used to guide the normal 
planning process. Although the reverse actions are not as 
rigorously defined as the normal actions, they can 
facilitate the backward planning process and help us 
identify the nearest point to the initial state in the 
backward planning. We first define the reverse operator -1 
to facilitate the subsequent discussion. 
 
Definition 3 (Reverse Operator -1): The reverse operator 
is defined over 2P  2P  2P  2P such that (Pre, Post)-1 = 
(Post, Pre), where P is the set of propositions in the 
planning domain in Definition 1 and Pre, Post  2P. 

  
Given an action a, pre(a-1) = eff(a) and eff(a-1) = 

pre(a). We can extend the definition of the reverse 
operator to planning problems as well. Hence, s0, g, A -1 
= g, s0, A-1  and a  A  a-1  A-1. 

Therefore, to go as far as possible towards s0 from g, 
we simply run the planner for the reverse planning 
problem until level-off takes place. In [5], we have shown 
that level-off will definitely happen in the reverse 
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planning problem g, s0, A-1  if the regular forward 
planning s0, g, A  fails. 
 
4.2.2 The Precondition of the Virtual Service. After 
both planning processes level off, we assume that the last 
proposition level in the planning problem s0, g, A  is Plf 
and the last proposition level in the planning problem g, 
s0, A-1  is Plb. Then, we calculate the precondition of the 
virtual service pvs as 
 
 pre(pvs) = Plf  s0  Plb 
 
This fits in the metrics for virtual service proposal. In 
Section 3.2, we conclude that the precondition of the 
virtual service should contain “hard” propositions 
measured by the level membership function lms. 
Therefore, all the propositions in s0 are removed first 
because they are given and considered as “easy”. Next, 
the overlapping portion in Plf and Plb is removed. This 
follows the following heuristic. When an action is 
applied, part of the preconditions will no longer be valid 
and, thus, will be moved into the delete effect. We 
consider this part as the essential part in the semantic 
meaning of an action. Since the virtual service pvs is used 
to connect the two planning processes, the proposition 
level Plb is treated as the next proposition level after Plf. 
Hence, the propositions in Plf  s0 but not in Plb are 
considered as the essential part of the precondition. 

 
4.2.3 The Effect of the Virtual Service. According to the 
metrics in Sections 3.1 and 3.2, the propositions in the 
effect of the virtual service should be “easy” so that it will 
be easily implemented and only contribute to the goal 
state indirectly. The effect is proposed as follows, 
 

eff(pvs) = (Plb  g  Plf)  (g  
lbAa

apre )( ), 

 
where Alb is the last action level in the backward planning 
graph. In the first step, we remove all the propositions in 
g from Plb because we consider that propositions in g are 
“hard” to achieve. Then, we remove the overlapped 
portion in Plb and Plf because this set of propositions is 
reachable from the initial state s0 while the virtual service 
is used to bridge the semantic gap and its effect should 
contain propositions that are not reachable from s0. 

The last part (g  
lbAa

apre )( ) is a little complex. 

This set of propositions is a subset of the goal state. They 
reach the last proposition level because of the “No-op” 
actions passing them all the way there. Hence, they are 
not consumed by any actions in the backward planning 
process g, s0, A-1 . Since all the actions in this planning 
process are in the reverse form of the original planning 
problem s0, g, A , we can equally say that this set of 

propositions is not generated by any actions during the 
planning process s0, g, A . The only way to generate them 
is to include them in the effect of the virtual service so 
that the semantic gap is filled. 

Due to the use of “No-ops”, all the actions that 
appear in the current action level will appear in the next 
action level as well. As a result, the last action level Alb 
contains all the actions in the planning graph.  

lbAa
apre )(  is the set of propositions that are 

consumed by some actions in the planning graph. Hence, 
(g  

lbAa
apre )( ) is the set of propositions that are not 

consumed by any actions and should be contained in the 
effect of the virtual service. 

In summary, the algorithm that is designed for virtual 
service proposal is shown in Figure 3.  

 
/*pvs: is the virtual service to be proposed*/ 
Propose_Virtual_Service( S0, G, A ) 
1. Start planning 1 on the planning problem S0, G, A ; 
2.         If level-off happens Then 
3.                 Start another planning process 2 on the planning  

                     problem G, S0, A-1  
4.                 Assume that Plf is the proposition level that level-off  

            is identified in 1; and Plb is the proposition level  
            that level-off is identified in 2. 

5.                 pre(pvs) = Plf  S0  Plb; 
6.             eff(pvs) = (Plb  G  Plf)  (G 

lbAa
apre )( ); 

7.         Else 
8.                 Generate the plan; 
9.        End If 
 

 
Figure 3: The Algorithm for Virtual Service Proposal 

 
4.3. Combine Partial Virtual Services into a 

Complete Virtual Service 
 
The function “Propose_Virtual_Service” shown in 

Figure 3 is invoked in line 3 in Figure 2, the outline of the 
algorithm. The function proposes a partial virtual service 
for each specific subplanning. For the sake of simplicity, 
we will combine all the partial virtual services into a 
complete service at the end.   

Formally, the whole planning process proposes a set 
of partial virtual services Sv = {pvs1, pvs2, …, pvsn}. 
According to the PDDL (Planning Domain Definition 
Language) [11], these partial virtual services can be 
connected together by using the conditional effects, which 
have the following form: 

 
(When 
     CONDITION_FORMULA  
     EFFECT_FORMULA) 
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Hence, the conditional effect for the complete virtual 
service will be composed as follows: 

 
(When  pre(pvs1) eff(pvs1)) 
(When  pre(pvs2) eff(pvs2)) 

 … … 
       (When  pre(pvsn) eff(pvsn)) 
 

5. Conclusions and Future Research 
Directions 
 
In this paper, we presented an algorithm to identify 

virtual services in the event of composition failure. 
Virtual services are used to bridge the semantic gaps and 
enable the composition process to continue even though 
the exiting service composition method may fail. This 
algorithm works on nondeterministic planning domains 
and, hence, is capable of solving practical problems. The 
metrics of evaluating the quality of the proposed virtual 
services are also proposed. To facilitate the evaluation, we 
present a technique to rank the difficulty of propositions 
such that the evaluation process can be quantified. This 
technique significantly simplifies the evaluation process 
and provides valuable information to guide the proposal 
of virtual services. 

Virtual services are treated in the same way as 
regular services during the composition and, more 
importantly, their specifications are useful for further 
analysis, design, and development. This is especially 
useful under the cloud computing environment as the 
number of available services can be huge. The generated 
plan will help reveal the nature of the demand and the 
virtual service will help the concerned persons develop 
concrete ideas about what is lacking and how to 
implement the missing content. This is typically a top-
down fashion to develop services. To the best of our 
knowledge, we are the first to combine the bottom-up and 
top-down strategies together to improve the level of 
service reuse. 

In the next step, we will turn our focus on proposing 
virtual services with QoS concerns. The proposed virtual 
services are not only used to bridge the semantic gap, but 
also maximize QoS during the selection of services by 
considering reputation, price, duration, reliability, etc. 
This will enable virtual services to provide more useful 
information and better reflect the true needs in cloud 
computing. 
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