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Abstract. Young children with severe motor impairments face a higher risk of 

secondary impairments in the development of social, cognitive, and motor 

skills, owing to the lack of independent mobility. Although power wheelchairs 

are typical tools for providing independent mobility, the steep learning curve, 

safety concerns, and high cost may prevent children aged 2 to 5 years from us-

ing them. We have developed a 3D wheelchair simulation system using gaming 

technologies for these young children to learn fundamental wheelchair driving 

skills in a safe, affordable, and entertaining environment. Depending on the 

skill level, the simulation system offers different options ranging from automat-

ic control (i.e., the artificial intelligent (AI) module fully controls the wheel-

chair) to manual control (i.e., human users are fully responsible for controlling 

the wheelchair). Optimized AI algorithms were developed to make the simula-

tion system easy and efficient to use. We have conducted experiments to evalu-

ate the simulation system. The results demonstrate that the simulation system is 

promising to overcome the limitations associated with real wheelchairs mean-

while providing a safe, affordable, and exciting environment to train young 

children.  
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1 Introduction 

Independent mobility has been found to be closely related to a child’s social, cog-

nitive, perceptual, and motor development [1]. Hence, children with severe motor 

impairments are exposed to a higher risk for the secondary impairment in the afore-

mentioned areas [2]. Although power wheelchairs are commonly used to provide 

independent mobility, children aged 2 to 5 years may find it difficult to use the 

wheelchairs on a daily basis. In addition, the high price of power wheelchairs may 

prevent the children from having access to a wheelchair at an early age. 

In contrast, wheelchair simulation systems can provide a safe and affordable envi-

ronment, in which children can practice fundamental wheelchair maneuvering skills at 

an early age. Sveistrup [3] pointed out that the wheelchair simulators can provide 

training in a functional, purposeful, and motivating context, which is a significant 

advantage over traditional training for wheelchair maneuverability. Rose et al. [4] 

demonstrated that the skills learned in virtual environments could be positively trans-

ferred to real environments. Holden [5] analyzed existing research results, which 
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demonstrated experimental evidence that motor learning in a virtual environment may 

be superior to that of real-world practice.  

In this study, we have employed the Unity 3D game engine [6] to develop a wheel-

chair simulation system. Users can control the wheelchair in three modes, namely, 

manual, automatic, and hybrid modes. The manual control mode gives a child full 

control over the wheelchair via a joystick. The automatic control mode, by contrast, 

utilizes our optimized A* algorithm to automatically maneuver the wheelchair 

through the environment. On average, the optimized algorithm takes half as much 

time to navigate than the un-optimized version due to the removal of redundant 

movements. The hybrid control mode allows for the control of the wheelchair to be 

shared by the human user and intelligence module. The optimized A* algorithm is 

also utilized, but in conjunction with an intent recognition algorithm so that the user 

and intelligence module can work together to control the wheelchair. When the user 

attempts to steer toward a goal, his/her intent is recognized by the intelligence module 

and a path is generated toward the intended goal. The intelligence module measures 

variances in the user's input to determine the probability of the user's intent to change 

goals. Once this probability reaches the intent threshold, the user's position, wheel-

chair orientation, and intent are used to determine the new goal. This novel strategy 

helps reduce frustration in young children by having the intelligence module handle 

fine motion control, while letting the child practice higher-level navigations. 

2 Method 

Fig. 1 shows two screenshots of our simulation system. Fig. 1 (a) illustrates that 

the simulation system offers three control modes, namely, manual, automatic, and 

hybrid control. Fig. 1 (b) shows a training scenario in our simulation system.  

 

 

 

(a) Three control modes (b) A training scenario 

Fig. 1. Screenshots of the Simulation System 

2.1 The Optimized Path Finding 

Under the automatic and hybrid control modes, the simulation system needs to find 

a path from the wheelchair’s current position to the goal in order to assist in the 



smooth navigation of the wheelchair. To enable path finding, we first model the envi-

ronment into a graph-like structure. Specifically, the graph structure is a grid of cells, 

where each cell has a position that relates to coordinates within the simulation system 

as shown in Fig. 2. The path considers obstacles along the way to avoid collisions. 

We employed the well-known A* algorithm, which is a heuristic search algorithm 

that is used to quickly and efficiently search through a graph structure and return the 

optimal path from a starting node to a goal node [7]. The heuristic function f(n) used 

by A* is commonly defined as follows: 

     f(n) = g(n) + h(n)          (1) 

where g(n) defines the distance from the node n to the starting node; and h(n) is the 

heuristic function that defines the estimated distance from the node n to the goal node. 

In reality, we have found that the path generated by A* contained many unneces-

sary zigzag turns. We can explain this issue by using a simple example as shown in 

Fig. 2. The solid circle in Fig. 2 represents the starting node; the node marked with an 

“X” is the goal node; and the grayed out nodes are barriers, which cannot be pro-

cessed. Particularly, Fig. 2 (a) to (c) show the values of g(n), h(n), and f(n), respec-

tively. Based on the heuristic values, a path is generated in Fig. 2 (c), which consists 

of 6 turning points. In fact, our simulation system contains a significantly larger num-

ber of cells than this simple example. As a result, the wheelchair turns very frequently 

and yields an unsmooth and uncomfortable driving experience.  

 

 
(a) Values of g(n) 

 
(b) Values of h(n) 

 
(c)  Values of f(n) 

Fig. 2. An Example that Illustrates the Issues of A* 

To improve the quality of the generated paths, we have optimized the A* path find-

ing algorithm such that it has been tailored to work more effectively and efficiently in 

our system. The optimized algorithm uses three markers during the optimization pro-

cess, namely, the checkpoint marker, the current marker, and the next marker. The 

checkpoint marker is used to mark the last node found that will be included in the 

finalized path. The current marker is used to mark the current node that the algorithm 

is examining as it traverses the path. The next marker is used to mark the node that 

comes after the current node in the un-optimized path. This marker is important for 

determining whether the current node needs to be removed or not.  

Initially, the algorithm starts by marking the beginning of the path with the check-

point marker, marking the second node with the current marker, and marking the third 

node with the next marker (as shown in Fig. 3 (a)). Note that the node marked with 



“+” represents the checkpoint marker, the node marked with “C” denotes that current 

marker, and the one marked with “N” is the next marker. After the nodes are marked, 

the algorithm checks to see if there are obstacles between the node marked with the 

next marker and the node marked with the checkpoint marker. If so, this means that 

the current node should be kept in the path and it is marked with the checkpoint 

marker. If there are no obstacles between the next node and checkpoint node, then the 

current node can be removed. Once the current node has been processed, the next 

node is marked as the current node and its child is marked as the next node. This pro-

cess repeats until the goal is reached and the resulting path will have all redundant 

movements removed. Fig. 3 (a) shows an example of when the node marked with the 

current marker (“C”) would be removed from the path. Fig. 3 (b) shows an example 

of when the node marked with the current marker (“C”) would become marked with 

the checkpoint marker (“+”). Fig. 3 (c) shows the resulting path that has been run 

through the optimization algorithm. This optimization process is important not only 

because it generates a simpler path, but also because the optimized path can take less 

time to navigate compared to an un-optimized path. 

(a) The Current Node “C” 

can be removed  
(b) The Current Node “C” 

will become the checkpoint  
(c) The Resulting Optimized 

Path 

Fig. 3. The Optimized Path 

2.2 Hybrid Control 

Different from the automatic control mode, where the user specifies a goal to 

reach, the hybrid control mode requires our simulation system to identify the user’s 

driving intention, i.e., where the user desires to go. This is achieved by considering 

inputs from the user as well as the artificial intelligence module. While the hybrid 

control mode still utilizes the optimized A* algorithm, we have also developed an 

intent recognition algorithm to identify the intended goal. As the user’s input from the 

joystick begins to oppose that of the AI module that is guiding the wheelchair, the 

player’s input is gathered and stored for analysis. When new input is added to the 

dataset, the variance of the set is calculated and stored for later use. The variance of 

the dataset signifies the variability or spread of the data and is used for calculating the 

standard deviation of the set. This statistic is important because it will allow the artifi-

cial intelligence module to filter out negligible, involuntary movements of the joy-

stick, such as slight hand tremors. After the variance is calculated, the current input 

from the user is compared to the dataset to see whether the input falls within the 



standard deviation of the data. If the input falls within the norm, it is considered neg-

ligible. Otherwise, it means that the user may want to move to a different goal and an 

intent counter is incremented to reflect this. As the intent counter increases, it will 

eventually surpass the intent threshold. When this happens, the artificial intelligence 

module utilizes the input from the user to determine where the user is intending to go. 

To do so, the user’s input is first converted into an angle that is relative to the wheel-

chair. For example, if the user’s input is to the sharp right, the angle would be 90 

degrees. Next, a list is generated that contains an angle for each possible goal in the 

room. The angle is calculated between the wheelchair’s orientation and the respective 

goal. Then, each angle in this list is compared with the input angle. The object from 

the list that has the closest angle to the input is identified as the new goal. After the 

user's intention has been recognized, the AI module will generate a new path from the 

wheelchair to the new goal by utilizing the optimized A* algorithm.  

3 Experiments 

We conducted experiments to evaluate the performance of the simulation system, 

specifically for the automatic and hybrid controls. The data was collected over three 

trial runs for each goal in each control mode. 

 

(a)  Results for the Automatic Mode (b)  Results for the Hybrid Mode 

Fig. 4. Experimental Results 

3.1 Performance Evaluation under the Automatic Control 

To ensure the fairness of the evaluation, the starting point of the wheelchair was 

fixed in each experiment. We measured the time required to reach each goal using the 

traditional A* algorithm and our optimized A* algorithm. There were six possible 

goals in the training scenario, namely, tables 1 to 3, a sofa, a bookcase, and the win-

dow. As shown in Fig. 4 (a), the traditional A* generated paths that took twice as 

much time to traverse compared to the time required by the optimized A* algorithm. 



3.2 Performance Evaluation under the Hybrid Control 

The experimental procedure was the same as that in the automatic control mode. 

The difference was that the user did not simply choose a goal object to navigate to, 

but instead, the simulation system tried to identify the driving goal first. As we are 

still collecting data from children with severe motor impairments, a healthy adult 

conducted the experiment in this study. We expect that children with severe motor 

impairments may have poorer performance. Fig. 4 (b) shows the experimental results, 

which illustrate that if the traditional A* algorithm were used, even the healthy adult 

would find it difficult to manipulate the simulation system. In contrast, if the opti-

mized algorithm was used, the performance was largely improved. 

4 Conclusion 

In this study, we presented a novel 3D wheelchair simulation system for training 

young children with severe motor impairments. Besides the manual control mode, we 

have developed optimized AI algorithms to support the automatic and hybrid control 

modes. The experimental results demonstrated that our system is a promising plat-

form to provide a practical, safe, affordable, and exciting environment to train young 

children. 
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